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SEMESTER-II
COURSE 1: MECHANICS AND PROPERTIES OF MATTER
Theory Credits: 3 3hrs/week

COURSE OBJECTIVE:

The course on Mechanics and Properties of Matter aims to provide students with a fundamental
understanding of the behaviour of physical systems, both in terms of mechanical motion and in terms of the
properties of matter

LEARNING OUTCOMES:

1. Students will be able to understand and apply the concepts of scalar and vector fields, calculate the
gradient of a scalar field, determine the divergence and curl of a vector field.

2. Students will be able to apply the laws of motion, solve equations of motion for variable mass
systems

3. Students will be able to define a rigid body and comprehend rotational kinematic relations, derive
equations of motion for rotating bodies, analyze the precession of a top and gyroscope, understand
the precession of the equinoxes

4. Students will be able to define central forces and provide examples, understand the characteristics
and conservative nature of central forces, derive equations of motion under central forces.

5. Students will be able to differentiate between Galilean relativity and the concept of absolute frames,
comprehend the postulates of the special theory of relativity, apply Lorentz transformations,
understand and solve problems

UNIT-1 VECTOR ANALYSIS 9hrs

Scalar and vector fields, gradient of a scalar field and its physical significance. Divergence and curl of a
vector field with derivations and physical interpretation. Vector integration (line, surface and volume),
Statement and proof of Gauss and Stokes theorems.

UNIT-II MECHANICS OF PARTICLES 9hrs

Laws of motion, motion of variable mass system, Equation of motion of a rocket. Conservation of
energy and momentum, Collisions in two and three dimensions, Concept of impact parameter, scattering

cross-section, Rutherford scattering-derivation.

UNIT-III MECHANICS OF RIGID BODIES AND CONTINUOUS MEDIA 9hrs

Definition of rigid body, rotational kinematic relations, equation of motion for a rotating body,
Precession of a top, Gyroscope, Precession of the equinoxes. Elastic constants of isotropic solids and
their relations, Poisson's ratio and expression for Poisson's ratio. Classification of beams, types of

bending, point load, distributed load.

UNIT-IV CENTRAL FORCES 9hrs

Central forces, definition and examples, characteristics of central forces, conservative nature of central
forces, conservative force as a negative gradient of potential energy, equations of motion under a .

Derivation of Kepler’s laws. Motion of satellites

UNIT-V SPECIAL THEORY OF RELATIVITY Shrs

Galilean relativity, Absolute frames. Michelson-Morley experiment, The negative result. Postulates of
special theory of relativity. Lorentz transformation, time dilation, length contraction, addition of

velocities, mass-energy relation.

Unit-I
Vector Analysis
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Scalar Field and Vector field

The value of a physical quantity changes from point to point in space. Every physical quantity
is defined by a point function. The region in which the point function defines the physical quantity is
known as a field.
Scalar field: If the value of a physical quantity at any point in a field is described by a scalar, then the
field is called a scalar field. Scalar field is represented by @(x, y, z). In a scalar field, the value of
physical quantity changes only in magnitude from point to point.
Ex: Temperature, Electric Potential, Density etc...
Vector Field: If the value of a physical quantity at any point in a field is described by a vector, then

the field is called a vector field. Vector field is represented byZ(x, v, z). In a vector field, the value of
physical quantity changes both in magnitude and direction from point to point.
Ex: Electric field intensity, Magnetic field intensity, velocity of a particle in a liquid etc..
Gradient of a Scalar Field
Gradient of a scalar field @(x, y, z)is defined as follows.

i+ 4 2 4 K2 — (i 1 L4 k2.0 = 70

ox

S0 S0 70 _ , .
V= la +J 3y + k 5, Vector Differential Operator

=> Gradient of a scalar field is a vector.
Physical significance of grad@:

dp = <Cdx + dy + 2 dz

— - = a(z) — _ —
V(Z).dr—( + o+ kS ).(dxl+dy]+dzk)

_ 090 6(/3 _

= a ? dx + o Y+ 5 dz dg =

VQ). dr =0
V@Lldr
1. Direction of grad@ at any point gives the direction of maximum rate of increase of @(x, y, z) at that

point.
2. Magnitude of grad @ at any point gives the maximum rate of increase of @(x, y, z) at that point.
Divergence of a Vector Field

Divergence of a vector field A'is defined as the dot product of the vector field A with Deloperator V.

= ST _ (0 50 |, T.0 . y - oA, o4, | o4
DIVA = V.4 = (5 + i + kp) (A1 + 4 + 4K)= S+ 55+

dx dy 0z

-> Divergence of a vector field is a scalar.
Physical Significance:
Divergence of a vector at any point gives the amount of vector flux emitted per unit volume at that
point.

0 Ifvis the velocity of a fluid, then div ;gives that rate of flow of the fluid.

v Ifdivv is zero, then the liquid is incompressible.
v lfdivv is positive, then the liquid is undergoing expansion.
v Ifdivvis negative, then the liquid is undergoing contraction.
Examples:
1. div} = EL

0
Here }is the electric current density and pis the charge density.
2. divB =0
Here B s the magnetic induction.

Curl of a vector field
Curl of a vector field is defined as the cross product of the vector with the del operator.

A O D S0 e . = T
CurIA—VxA—(Lax+]a +k )x(Axl+Ay]+AZk)
-> Curl of a vector field is a vector.
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Significance:
71 Curl means rotation. Hence the curl of a vector field gives the rotation of the vector.
v If the curl of a vector is zero, then the vector is called irrotational.
v If the curl of a vector is non-zero, then the vector has rotation.
"1 Curl of a vector at any point gives the maximum line integral of the vector around a closed
curve at that point.

Examples:
1. Curlv = 2w

Here v is linear velocity and w is angular velocity

2. CurlB = uol
Here B is the magnetic induction and ] is the current density.
Line integral
A

dl
A
Consider a curve AB as shown in figure. Consider a small element of length dl on the curve AB. Let
be a vector at the point P. Let 6 be the angle between the vectors A and the element dl.

Then the line integral of the vector Zalong the curve AB is given by

2
S

B
[ A lszBAcoscosedl

y A

IfZ=AxE+Ay7+A k anddl = dxi+ dyj+ dzk

Then [A.dl =

n— W oR

n——

(Axdx +A dy + Axdz)

Example:

[B.dl=yl

Where B is the magnetic field and | is the electric current.

Surface Integral
Consider a surface S. Consider a small element of area ds on the surface S. Let A be a vector at the

point ‘P’. Let 6 be the angle between the vectors A and the normal to the element ds.
Then the surface integral of the vector Aover the surface S is given by

If A.ds = [[ Acoscos®ds
Example:
[[ B.ds=0
Where B is the magnetic field.

Gauss Divergence Theorem
Statement: Surface integral of a vector A over a closed surface S is equal to the volume integral of

the divergence of the vector A over the volume V bounded by the surface S.
ffSA. ds = fffvdivA av

Proof:
Consider a volume V enclosed by a closed surface S. Let us divide the volume V into a large
number of small volume elements . Let us assume that the volume element dV is in the shape of

parallelepiped. Let dx, dy,dzbe the lengths of parallelepiped along X,Y,Z axes. The vector Ais
acting along the face ABCD as shown in figure.
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A dz
dx

A\ 4
x

Y

Area of the face ABCD = dy dz

Hence the amount of flux entering the parallelepiped through the face ABCD is given by
= Ax(P 1) dy dz

Similarly the amount of flux leaving the parallelepiped along the face EFGH is given by
= Ax(Pz) dy dz

Since the length of the parallelepiped is very small

Ax(Pz) - Ax(Pl) + aafcx dx

Hence the net amount of flux
= Ax(Pz) dydz — Ax(P1) dy dz

_ (Ax(Pl) + aaix dx)dy dz — Ax(Pl) dy dz

= A (P )dydz + ‘;i dxdydz — A (P,) dy dz

0A
= Tox dx dy dz

Net amount of flux along X-axis is given by

A,
= Tox dx dy dz
Similarly the net amount of flux along Y-axis is given by

%,
=% dxdy dz

Similarly the net amount of flux along Z-axis is given by

oy
=——dxdydz

Hence the total amount of flux leaving the volume element dV is given by
04, GY) 04,

5, dxdydz + _Lay dxdydz + = dxdydz
04, 04 04,

= ( — t % +—; )dxdydz

( GY\ 9A 0A

x y z
0x+6y+az

)dV
= divAdV
+Jf A.dS = divAdV
Amount of flux leaving the total volume V is equal to the total flux from all the volume elements dV'.
+Jf A.dS = [[f divAdv
This is known as Gauss divergence theorem.
Stokes Theorem

Statement:Line integral of a vector 4 around a closed curve C is equal to the surface integral of the
curl of the vector A over the surface bounded by the curve C

¢ Adr = ffSCurl A.dS
c
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Proof:

Line integral of the vectorA around the closed curve C

L=¢Adr
C

O

P

—>
<+

q
4—

C,
Let us divided the curve C in to two parts C1’ C2 by the line pq. Hence the area enclosed by the curve C

is divided into two parts.Let lee the line integral of the vector around the curve Cland L2 be the line
integral of the vector around the curve C2 .

L = L1 + L2
Since the line integral around the curve C1 is from p to q and the line integral around the curve C2 is
from g to p. Hence the line integral along the line pg need not be considered.

Closed Curve

ds

dS ,dS,,dsS,, .

Let us divide the area enclosed by the curve C in to a large number of small area elements
These area elements dSl, dSz' dS3,

$Adr =S¢ Adr
c C

n

enclosing the element dS1 is given by

We know that the line integral of a vector Aata point is equal to the maximum line integral of the
vector around the curve at that point. Hence the line integral of the vector A around the curve

$Adr = (V X A).dS wrrre 1

Cl

The total value of line integral is obtained by adding all the integrals on the left hand side of equation
¢ Adr + $ Adr + § Adr + ... ¢ A.dr

c c c

1 2 3

Similarly adding the integrals on the right hand side of the equation we get the total value of the
surface integral (V x A4).dSover all the surfaces ds ,ds,,ds,

I .(v x 4).ds
From equations 2 and 3

$ Adr = [[ (V x A).dS
C
This is called Stokes Theorem.
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UNIT-lI

Mechanics of particles
Newton’s laws of motion

Newton'’s first law:
Every body continues to be in a state of rest or uniform motion unless it is acted by an external force.

Newton’s second law:
The net external force acting on a body is directly proportional to the rate of change of momentum.
_4ar _ d — v
F_dt_dt(mv)_ ac - ma

F = ma

Newton’s third law:
Every action has an equal and opposite reaction.

F12:_F21

Equation of motion of a system of variable mass
If the mass of a system changes with time without remaining constant, such a system is known
as a system of variable mass. Motion of the rocket is an example of a system of variable mass. When
the fuel inside the combustion chamber of a rocket is burnt, the burnt gases are ejected from the
rocket in the form of a gas jet with high velocity in backward direction. As a result, the mass of the
rocket decreases gradually and its velocity increases.

t+ At

v+ Av

Consider a system of mass M moving with velocity v as shown in figure. After a time At, a mass AM is
ejected from the system with velocity u. As a result, mass of the system is reduced to (M — AM)and
its velocity increased to (v + Av).

Initial momentum Pi = Mv

Final momentum Pf =M — AM)(v + Av) + AMu
Change in momentum AP = Pf — Pi =M — AM)(v + Av) + AMu — Mv

According to Newton’s second law

F _ dP — AP _ (M—=AM)(v+Av)+AMu—Mv — Mv+MAv—vAM—-AvAM+AMu—Mv
ext dt At At At
Fext =M% — vAA—At/[ — Av AAA: + u AA]:[
If At—0, then === S = 2 Apx
e = M + v — gy = e (Mv) — u
Fext - %(Mv) - u%
The above equation represents the equation of motion of a system of variable mass.

v = MG+ v = u iy

MG = F,, + utyr = vy

dv _ dM
Mw— Fext + (u — U)T

Reaction force or thrust acting on the rocket is given by

reaction dt
dv
LY _F
dt ext reaction
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Expression for final velocity of a rocket

v

y %@ —_—
="

8

. dM
— Reaction force=(v — u) o

i

Motion of the rocket is an example of a system of variable mass. When the fuel in the
combustion chamber of a rocket is burnt, pressure inside the chamber increases. Hence the hot
gases inside the combustion chamber are ejected from the rocket in the form of a gas jet with high
velocity in backward direction through a nozzle. Hence mass of the rocket decreases gradually due to
the ejected gases and its velocity increases.

Consider a rocket of mass M moving with a velocity v at time t as shown in figure. After a time
At, fuel of mass dM is ejected from the rocket with a velocity u in the form of a gas jet. Hence the
velocity of the gas jet relative to the laboratory frame of reference is (v — u).

Relative velocity v . =Uv—u
relative

Reaction force on the rocket

— (1) — I
reaction (17 u) dt
External force on the rocket
Fext - Mg
Hence the resultant force on the rocket in upward direction
F=F _
reaction ext

dM
F=w-w—_-— Mg
According to Newton’s second law
_dp _ d
F=—= = (Mv)

dt d
d aM
—Mv)= v — w—-— Mg
dv dM dM aM
Mdt_l_vdt_vdt_udt_Mg
dv am
M ac . Yar T M
v __ w dM
dt M dt

Let VU be the initial final velocities and M, M be the initial and final masses of the rocket. Integrating

the above equation on both sides

v M t
fdvz—udeM—gfdt
v, M0 0

(), == u(log M), = g(t),

V= v, == u(logM — logMO)— gt

v—v =— ulo Mo t
0_ gM() g

M
0
v—v0=ulog7—gt

M
v=v0+ulogvo—gt

The above expression represents the final velocity of the rocket.
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Case(i):
Ignoring gravity, g=0

MO
v=v,+ ulog =
Case(ii):

If the initial velocity of the rocket is zeroi.e v, = 0

MO
v = ulog -

Two dimensional elastic collision
Let a particle of mass mlmoving with velocity ulcollides with another particle of mass m, at

rest. After collision, mass m, is scattered at an angle elwith the original direction. Similarly mass m, is

scattered through an angle 92. Let v, vzbe the velocities of the two masses after collision.
Applying law of conservation of linear momentum along X — axis,

mu +0=muv.cosO + m v.cos0
171 171 1 , 2 2

mu =m.v 0 muv.cosO. ... 1
W \v,cos 8, + 2cose2

2
Similarly, applying law of conservation of linear momentum along Y — axis

0= m v sin 61 — mzvzsm 92

muvsind = muvsin®. ... 2
11 1 2 2

2
According to law of conservation of kinetic energy,

1muz+0—1‘mv2+1mv2
2™ — 2" 227

2 2, 2 3
mu =muv . +muv, ...
Let m, = mzto solve the above equations.
From eqgn 1
ul=vlcose1 + vzcose2 .................. 4
From eqgn 2
v, sin 61 = v,sin 92 .................. 5
From eqgn 3
u =v e 72 6
From eqgn 4
u, —v,cos 91 = v,cos 62 .................. 7

Squaring on both sides,
2 2 2
(u1 — v, cos 61) =, cos 62

2 2 2 2 2
u, + v, cos 61 — 2ulvlcose1 =v, cOs 62
Fromeqn 5

v.sinB, =v_sin0
1 1 2 2
Squaring on both sides

v#sin? §; = v3 sin? 6,
Adding eqns 7 and 8
2 2
u tv - Zulv cos 91 =v,

1
From eqgn 6

uz—vz+v2
1~ 1 2

2

v2+v2+v2 2uv 0 =v
1 2 1 wyosy, =v,

2
Zv1 — 2u1vlcos 61 =0
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vl—ulcose1 =0
vV =ucos9. ...
1 1 1 9

From eqn 6

2 _ 2 - leoste = uisinte
v,=u —ucos® =usinb

v, = usin 61 ............ 10

From eqgns 9, 10 it is clear that v,v,are normal components of u,.

0 +0 =90

Hence in a perfectly elastic collision between two particles of equal masses, when one particle is
initially at rest, the two particles always move off right angles to each other after collision.

Impact Parameter

Consider an alpha particle of mass m and charge + 2e moving towards a nucleus of charge + Ze in
AX direction. Alpha particle follows a hyperbolic path ACB instead of a straight path AX due to
Coulomb's repulsion of the nucleus. pis the perpendicular distance from nucleus N to the initial
direction of the alpha particle. This is known as the Impact parameter. Hence Impact parameter can
be defined as follows.

1 Impact parameter (p) is defined as the perpendicular distance from the nucleus to the initial

direction of the projected alpha particle.
If Impact parameter p = 0, then the collision is known as direct collision. In this case, the scattering
angle ¢ = 0.
Collision cross-section (or) Scattering cross-section

2

beam of particles

hd Scattererr

When alpha particles are incident on a thin gold foil, they are scattered in different directions.
Let N be the incident intensity of the alpha particles. Let dN be the number of alpha particles
scattered in to solid angle dw. The ratio of number of alpha particles scattered in to solid angle dw
and the incident intensity is known as the Impact parameter.

Number of alpha particles scattered into solid angle dw
Incident intensity

dN
N

Scattering cross-section(0) =

0o =

Physics Minor-II Sem-Mechanics & Properties of Matter-K.V.Ganesh Kumar, Lecturer in Physics ]].



Rutherford’s Scattering Cross-section

‘ rsin®
alpha particles
L

L] Flouroscent Screen(S)
Gold foil

Consider a narrow beam of alpha particles incident normally on a gold foil as shown in figure.
Alpha particles are scattered in different directions due to coulomb’s repulsive force of the nucleus.
A fluorescent screen (S) is used to detect the scattered alpha particles. Let t be the thickness of the
gold foil and N be the number of atoms per unit volume. Let Q be the number of alpha particles
incident on the gold foil per unit area. Any alpha particle which comes within a distance of impact
parameter (p) from the nucleus will be scattered through an angle @. Hence in order to calculate the
number of alpha particles scattered through an angle @. Let us imagine a circle of radius equal to the

. : : 2
impact parameter around each nucleus. Total area of all such circles is p nt.
"1 Probable number of alpha particles which can come within a distance p from the nucleus

2
= Tip ntqQ.
"1 Number of alpha particles having impact parameter between p and p + dp

2
= d(‘l‘[p ntQ) = 2mpntQdp
1 Hence the number of alpha particles having scattered through an angle between @ and @ + do
= 2mpntQdp
Number of alpha particles scattered in to solid angle dw
Incident intensity

Scattering cross-section(o) =

Solid angle between @ and @ + d@ = 2msin @ d®
1 Hence number of alpha particles scattered in to solid angle dw
=oldw = ol2nsin® d®
This value should be equal to the number of alpha particles having impact parameter between p and
p + dp.
1 Number of alpha particles having impact parameter between p and p + dp
= 2mp dp
Number of incident alpha particles = 2mtp dp. |
ol2nsin@d® =— 2npdp. I
—2npdpd __ pdp
2msin @ d@.I sin@do
_pdp
sin@ do
ze @

p = —cot

2Te mv 2
00

2
dp = Z—ez(— icoseCZ% d(Z))

2Te mv 2
00

0o =

o =—

2 2
2 2 2 2
(Z—ez) cot %(—%cosec % d(Z)) (Z—ez) cot %(—%cosec % d@)

- Zneomvo 21Teomv0

sin @ do 2sin %cos% dd

2 4
Z e

o = 22 24, 49
16T em v sin —
0 0 2

This is known as Rutherford’ Scattering cross-section.
Rutherford’s scattering formula:
Number of alpha particles scattered through an angle between @ and @ + d@

= 2mpntQdp
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Substituting the values of p and p + dp in the above equation,
Number of alpha particles scattered through angle between @ and @ + d@

2 2
Z Z 1 2
= 2mntQ(—=—cot % —ez(— —-cosec % d@)
21T€0m17 21'[(—:0mv

0 0
These particles strike the screen (S) in a circular annulus of area dA

dA = 2ntrsin @ rd@ = anzsin Odo = 41Tr25in % cos % do

Number of alpha particles incident on the screen per unit area

2 2
z z 1 2
2mntQ < cot% < (—7C0$€C % d@)
Zneomvo 21'[«50mv0

2 .
4mtr sm%cos% do

N =

2 4
N = QntZ e
— 2
222 4 , 4
16T eor m vosm%

This is known as Rutherford’s scattering formula.
Hence from the above equation, it is clear that the number of alpha particles scattered per unit area is

. 4
e Inversely proportional to SI1 >

e Directly proportional to the thickness of gold foil 't

e Directly proportional to the square of the atomic number 'Z' of the scatterer
e Inversely proportional to the square of the kinetic energy of the alpha particle.
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Unit-lll
Mechanics of Continuous media

Elasticity:
When external deformation forces are applied on a body, its size and shape change. The

property of a body to regain its original shape and size when the external forces are removed is
known as Elasticity.
Elastic Moduli of Isotropic Solids

Young’s Modulus (Y)
Bulk Modulus (K)
Rigidity Modulus ()
71 Poisson’s Ratio (o)
Young’s Modulus (Y):
71 Ratio of Longitudinal Stress to Longitudinal Strain is called Young’s Modulus.

O O O

Longitudinal Stress
Longitudinal Strain

Consider a rod of length [ and cross sectional area a .Let 61 be the change in length of the rod when a
force F is applied along its length.

Young’s Modulus (Y)=

Longitudinal Stress = %
Longitudinal Strain = %
F
, - a Fl
Young’s Modulus (Y)=—— = i

l
Bulk Modulus(K):
[1 Ratio of Normal Stress to Volume Strain is known as Bulk modulus.

Bulk Modulus(K) = Normal Stress

Volume Strain
Consider a body of Volume V and Cross sectional area a. Let 8§V be the change in volume when a
normal force F is applied over the entire surface of the body.

F
Normal Stress= o

. sV
Volume Strain= T

F
a FV
v asV

Bulk Modulus(K) =

<

Rigidity Modulus (1):
71 Ratio of Shearing Stress to Shearing Strain is called Rigidity modulus.
Rigidity Modulus (1)) = -Sreaing Stress.

Shearing Strain
Consider a body of Cross sectional area a. Let 6 be the angle of deformation when a shearing force
F is applied to it.

£
a

Rigidity Modulus (1) =

Poisson’s Ratio (0):

1 Ratio of Transverse Strain to Longitudinal Strain is called Poisson’s ratio.
Transverse Strain
Longitudinal Strain

Consider a wire of length [ and diameter . Let 81 be the increase in length and 6D be the decrease in
diameter when a force F is applied to it.

Poisson’s Ratio (0)=

8D

D L 8D

Poisson’s Ratio (0) = gl = Dl
T
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Relation between Elastic Moduli or Elastic Constants

P
1 yd
' ’
! -
: l %
Il s
| ’
i e
1
1
+— ! ——p
P |-
A
R X
,/ PRI T T EEEE R, e
R4 ’;’ o
s /,’ T

P/
s |
Consider a unit cube as shown in figure. Let the faces of the cube are parallel to the coordinate axes
X,Y,Z. Let a Normal Stress P is acting on all the six faces in an outward direction.

Longitudinal Stress
LOngitudinal Strain

Young’s Modulus (Y)=

P
; : . Longitudinal Stress T
Longitudinal Strain = —-Z — ;

P
Young’'s Modulus Y
Expansion along X axis= %

Transverse Strain
Longitudinal Strain

Poisson’s Ratio (0)=

. . ' . . . ) P
Transverse Strain = Poissons ratio X Longitudinal Strain = ¢ +
: P
Compression along Y,Z axes = o v
Hence due to the Normal Stress P along X-axis
: , P
Expansion along X axis = -~
Compression along Y,Z axes = o %
Strain
Stress X axis Y axis Z axis
Stress along X — axis P P P
Y 0%y 0%y
Stress along Y — axis P P P
0%y Y 0%y
Stress along Z — axis P P P
0%y 0%y Y

Relation between Bulk Modulus and Young’s Modulus:
Let ese e, be the expansions along X, Y, Z axes due all the normal forces.

P P P _ P P _ P
ex—Y—O'Y—O'Y—Y—ZO'Y—Y(l—ZO')

e =%(1 — 20)

X

_ P
ey—T(l — 20)

- P _
e =7 (1 — 20)
Hence Longitudinal Strain in any direction= %(1 — 20)

Volume Strain = 3X Longitudinal Strain = 3%(1 — 20)

Normal Stress
Bulk Modulus(K) = -~

2 . Y
P  3(1-2
3--(1—-20) (1-20)

Y = 3K(1 — 20)
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Relation between Rigidity Modulus and Poisson’s ratio:

Consider a unit cube as shown in figure. Let an expansive stress P is acting along X axis and a
compressive stress P is acting along Y axis on the unit cube.
Let ese e, be the expansions along X, Y, Z axes due all the normal forces.

ex=7+ 7_7(14-0')
__r_ P __ P
e, ="y "0y = 7 (1 + o)
— ~- L P _
e = O'Y-I-O'Y—O

Hence equal amounts of expansive and compressive strains are produced along X,Y axes. These
two mutually perpendicular expansive and compressive strains produce a shearing strain.

Shearing Strain 8 = 3X Longitudinal Strain = 2%(1 + 0)

S __ _Shearing Stress _ P _ P _ Y
Rigidity Modulus (n)_ Shearing Strain ~ 0 2%(14_0) ~ 2(1+0)
_ Y
n= 2(1+0)
Y =2n(1 + o)

Relation between Elastic Moduli
Y =3K(1 - 20)>5-=1-20

Y =2n(1 + o) = %=2(1+0)

Adding these two equations,

Y Y
3K + 2n 3
9K
Y = 3K+n

Y = 3K(1 — 20) Y =2n(1 + o)
3K(1 — 20)= 2n(1 + o)
3K — 2n = 2no + 6Ko
3K — 2n = o(2n + 6K)

_ 3K—2n
6K+2n

Types of Beams
A structure designed to support loads applied perpendicular to its axis is known as a beam.

Beams are of three types.
e Simple beam
e Cantilever beam
e Simple beam with overhang
1. Simple beam: A beam supported at the two ends is known as a simple beam. One end of this
beam is supported by a knife edge while the other end is supported by a roller. Simple beam is
shown in the figure.
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2. Cantilever beam: A beam in which one end is fixed and placed horizontally and weights are
suspended at the other end is known as a cantilever beam. Cantilever beam is shown in figure.

7
ﬁﬁ A

Load

3. Simple beam with overhang: A beam in which one end is extended in the form of a cantilever
beyond its support is known as overhanging beam. Overhanging beam is shown in figure.

A a

Tvpes of bendin

Bending of beams is of two types.

e Uniform bending

e Non-uniform bending
Radius of curvature of the neutral axis of a beam is known as the radius R of the beam.
Uniform bending: If the value of radius R is the same for all points of neutral axis, the bending is
called uniform bending. The bending of a beam which is symmetrically supported on two knife
edges and equally loaded at the two ends is an example for uniform bending. Uniform bending is
shown in figure.

l.oad

Non-uniform bending: If the value of radius R is different for different points of the neutral axis, the
bending is called non-uniform bending. The bending of a beam which is symmetrically supported on
two knife edges and loaded at the middle is an example for non-uniform bending. Non-uniform
bending is shown in figure.

Load

Physics Minor-II Sem-Mechanics & Properties of Matter-K.V.Ganesh Kumar, Lecturer in Physics 17



Unit-lll

Mechanics of Rigidbodies
Euler’s equations (or) Equations of motion of a rigid body

Equation of motion of a rigid body in space coordinate system

(e 1
Space — dt ..................
Sspace
The rotation of a rigid body can also be studied by a coordinate system fixed in the rigid body.This is
known as body coordinate system.
Lyay = (1 ‘”)body .................. 2

We can transform the equations of motion of a rigid body from body coordinate system to space
coordinate system using the operator given below.

d d -
space space
dL dL - -
( dt) - ( & ) +o XL
space space

From equations 1 and 2

N
- - -
d

T= d—i +w XL
If the body is symmetric, the axes of rotation coincides with the principal axis of symmetry.In this
case, except the diagonal elements Ixx, Iyy, IZZ, the non-diagonal elements of the inertia tensor will be

Zero.

Let Ixx = 11’ Iyy = 12, IZZ = I3

|t Tk
WXL=|w w, w;
Ly Ly Ls

= {(w,Ly — w3L,) + J(wsL, — w,L3) + k(w,L, — w,L,)

Hence in X direction

dL
— 1 —
=7 t(l -—wl)
Since L = lw
4= 11 T (0,0, = w,][,0,)
— 1 —
T =L—+ (I3 Iz)oozu)
Similarly in Y, Z directions
dw
T, =1, dt — 1 )oo W,
T, =1, dt -1 )oo W,

The above three equations are known as Euler’'s equations of motion of a rigid body. Expressing
these equations in terms of x, y, z.

T =
X

dw
T =1 y+(l—1)wu)
y oy

d
T —IZ—+(I —I)oo N
Expressing these equations in symmetrlc form

T
x

— 1w w

y Z y Zz
du)y

Ty y dt

dw
T IZ——(I—I)ooo)y
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Applications of Euler’s equations
Law of conservation of energy:
Euler’s equations of motion are given by

R T -1 )u) 0,

L=5h dt —1 )u) W,

t—13dt+(1—1)oo(o

When there is no external torque acting on the rigid body t = 0
dw

1 —

L+ (1, - 1)w,w, =0

L7 +U —wo =0
dw

3 dt -1 )w =0

Multiplying the above equations with W, w,, 0 respectlvely and adding we get
3
doo doo du)

’17w +127w2+’37‘”3 0

2 dt [I + 12(02 + I3co3j =0

2
Iloo1 + Izoo2 + 1 oo = K =Rotational kinetic energy

1 3
2 dt (ZK) =0
dK
Tdt =0
K = Constant

Hence the rotational kinetic energy of a rigid body remains constant in the absence of net external
torque.

Law of conservation of angular momentum:
When there is no external torque acting on the rigidbody T = 0

dw
1 —
I1 = +(I —I)wu) =0
dw
) dt -1 )w W, = 0
3 dt — 1 )oo =0
Multiplying the above equations with Lw,lw, 13003 respectlvely and adding we get
2 do, 2 dw, 2 dw
1d dtw2+3 dt 3_0
2 2 2 2
2 dt[] oo2+13u)3j=
1 d[,2]
?E[L |=0
dL
dlL
o =0

L = Constant

Hence the angular momentum of a rigid body remains constant in the absence of net external torque.
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Unit-IV
Central forces

Central force definition and examples
A force which always acts towards or away from a fixed point and whose magnitude depends only on

the distance of the particle from the fixed point is known as a central force.

Central force F = f(r)r

Examples:
1. Gravitational force is a central force.
Gravitational force between two objects of masses m,m, separated by a distance r is given by

2. Electrostatic force is a central force.
Electrostatic force between two particles of charges g r 4, separated by a distancer is given by
1 49 "

- T
41te 0 r2

F =

9,4,
Let——=C
41‘[60

A

N
.'.F:iz'r
-
C
f=-—=%
T
1

e 5

To prove that Central force is a conservative force
If the work done by a force in moving a particle from one point to another is independent of the path

followed then such force is known as a conservative force. (Or)
If the work done by a force in moving a particle around a closed path is zero then the force is known
as a central force.

Wi

Work done by the central force Fin moving the particle from A toBis given by
B g

WAB = {F.dr

Central force F = f(r)r

B Ao
W = { f(r)r.dr

rr=r1
Differentiating on both sides ; c?r + _)r. 77 = 2rdr
277. cz)r = 2rdr
:. _)r = rdr
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72 _>r = dr
B N B
W, = f(rdr = f(r)dr
A A

B
WAB = £f(r) dr

Value of this integral depends only on the nature of the function and the limits.

A B
Hence WBA = gf(r) dr =— if(r) dr =— WAB

WAB T WBA =0

Hence the work done by central force in moving a particle around the closed path is zero.
Properties of Central forces
v A force which always acts towards or away from a fixed point and whose magnitude depends
only on the distance of the particle from the fixed point is known as a central force.

- A
Central force F = f(r)r
v Central force is a conservative force. Work done by a central force in moving a particle from
one point to another is independent of the path followed.
v Under the action of a central force the torque acting on a particle is zero.
v Under the action of a central force the angular momentum of a particle remains constant.
v Under the action of a central force the aerial velocity remains constant.

Equation of motion of a particle under the action of a central force
When the Central force acts on a particle, the acceleration is always in the direction of the radius

vector. This acceleration is known as radial acceleration.

2 2
. . dr do
Radial accelerationa = — — r(—)
T de dt

Under Central force, the transverse acceleration is always zero.

. 1 df 2de
Transverse acceleration at =—r —|=0

r dt dt
2 de
T = h = Constant
a6 _ _h
e~ 2
1
Let r =—
u
dr _ d (1) _ 1 du 1 du db 1 du h hdu
dt — de\u) 2 dt 2 de dt Jde 2 do
dr du
dt hde
2 2
dr d (dr d du d { du d (du do du h 2 2du
Lo )« ) ) ) o e
dt t t dt doe dt \ do daoe doe t de” r do
2 2
d 2 24
T =—hu—
dt de
2 2
d de 2 24 h 2 24 2 3
a =r— () =— P - L = L
T dt dt do r
From Newton’s Second law
2 2 du 2 3
F=—ma =—m|—hu——hu
T de

2
F = m(h2u2 Z(; | h2u3)

F 2 2(d*
—=hu[—=5+u
m de
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do nu

Kepler's first law of planetary motion
Every planet revolves around the sun in an elliptical orbit with the sun at one of its foci. This is known
as Kepler's first law of planetary motion.
Let a planet of mass ‘m’ revolve around the sun of mass M in an elliptical orbit.

o GM
Gravitational force ~ F = —— = =
r T
“GM = p = Constant
= F __n
p m 2
Equation of motion of a particle under the action of Central force
2
du p W i
+ u = = = —
dez hZ 2 2h2u2 hz
d*u u
+u=-—
de’ R
du
—+|u—-+|=0
de h
2
d 1 1
— |+ |lu——|=0
do’ ( h* ) n?

Solution of this differential equation
X = Acos (9 — 90)
Ky — —
u 7= X = Acos (6 60)
— —
u = 7 + Acos (9 90)
_ e _
u—h2[1+Aucos(9 60)]

1 1+Athos (6—90)

r K

1l
This equation is similar to the equation of a Conic.

1 _ 1+ecos®
r l
AR’
Eccentricity e = p
2 2 2
Kinetic Energy K. E = %m[(%) 4 (%) ]
dr — ﬂ ﬂ L
T h = and o :

u =%+ Acoscos(e —90)

du

o = A sin sin (9 — 90)
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2

K.E =—mh2[A2(6 -0, +%+A2(6 -0) + 2:;‘ cos cos (0 — 90)]

_ g2 A%y 2 _
K.E = th[A + e + 7 coscos(@ 60)]

r r r r
Potential Energy P.E = [ Fdr = [+-dr = umf%dr = um(— %) =— um(%)
o0 r o T oo oo

(o]

P.E =— um% =— pmu
- - —
P.E = um[ 7 + Acoscos (6 GO) ]

= - m(uh—”z+ HA cos cos (6 — 90))=— m(:_z + pdcoscos (6 - e0))

S WS i BT o)) om Lgp(a . 2w _
= th(hz h2+h2uAcoscos(6 60))— th(h4+ 7 coscos(@ 60))

DN

(@)

P.E =— —mhzl 2‘5 -—COS COS (6 — 90) ]

B N e TG 1Y _ Lon(2s 4 2w _
E = mh[A+h4+ 7 cos cos (0 60 ]—zmh( — + 7 coscos(e 90))

2E _ g% _

mh’ Kt
2 2E W 2E h' W 2ER°
A = 4 + 2 = 4 1 + 2 2 = 4 1 + 2
h mh h mh™ u h mu

oS
Il

[ 2
Lz 1 + 2Eh2
h mu
2 2
Ah 2Eh
e = =4/l +—

For a bound System E < 0. Hence Eccentricity e < 1.
Hence the orbit is an ellipse.
Kepler’s Second law of planetary motion
The area velocity of a planet always remains constant. This is known as Kepler’'s Second law of
planetary motion.

Consider a planet is moved from P to Piin a time At as shown in figure.

P
r H r+dr
Sun

Area dA = Area of the triangle = % r (r + dr) sin sin d6

IfAt - 0, then r(r + dr) = r’and sin sind® = d@

1 2
dA = =T do
1 2
: dA 57 d8 1(.2de
Areal Velocity= —— = zdt =7(r ?)
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2do _ h _
T = =Constant
. dA h
Areal Velocity= —~ = — =Constant
Kepler’s third law of plan motion

Square of the time period of a planet is directly proportional to the cube of the length of its semi-major
axis

T2 < a3

.
S~

U

, . Area swept in one revolution mab 2mab
Time period T = _ =—=
Areal velocity - h
| o b
Length of semi latus rectum [ = T = —
Kb
L a
2 2
h"=b"+
a
h = bA|&
a
2mab Zna\/a
T = =
[t W
2 2 3 2 3
T = 4t a — (41'[ )a
m m
2 3
‘ T xa ‘
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Unit-V
Special theory of Relativity
Postulates of Special theory of relativity:

v Laws of Physics remain the same for all observers in uniform motion relative to one another
V' Speed of light is the same for all observers in uniform motion relative to one another.

Inertial Frame of Reference: A frame of reference in which Newton’s laws of motion are valid is known as an
inertial frame of reference.

Non-Inertial Frame of Reference: A frame of reference in which Newton's Laws are not valid is known as a Non-
inertial frame of reference.

Galilean Transformation

7 AS Z'AS'

F 3

vt

Y Y
[} I
Consider two inertial frames of reference S,S . Frame S is moving with a velocity V along the positive X -axis
r
relative to the frame S. Let the two frames of reference S, S coincide at time t = 0.

Let be the co-ordinates of the point P with respect to the frames S, S "are (x,y,2,t) and (x’, y ;’ Z ’, t ).
From Figure,

x=x + 1t

x =x—vt
Similarly yr =Y
7z = 7
t =t

The above equations are called Galilean Transformation equations.
Inverse Galilean Transformation equations are

x=x +vt
y=y
Z=Z
t=t

» Space interval is invariant under Galilean transformation
» Time interval is invariant under Galilean Transformation.

» Laws of mechanics are invariant under Galilean Transformation.
Lorentz Transformation

Consider two inertial frames of reference S, S " FrameS' is moving with a velocity ¥ along the positive X -axis
relative to the frame S. Let the two frames of reference S, S ' coincide at timet = 0. Let be the co-ordinates of the
point P with respect to the frames 5,5’ are (X,9,2,t) ana’(xr,yr,ZI, t’).

Let a beam of light is emitted from the origin O at time t = 0.The beam of light reaches the point P after a time.
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7 AS Z'AS'

Y
Distance x24y2yz2
Relative to frame S, C=— = Yy
Time t
12 12 r2
. g Distance \/x ty otz
Relative to Frame S , C =— =
Time t
J(x2 +y2 + z2)
C =
t
c2t? = x2 + y2 + 7°
1 +y2 S e CIE | F |
Jx'z L4575 3.5
C = 7
t

At =x+y% 44"
X4y 2 2 = 0 2

From equations | and 2

Pyt g P s Pyt gl
y =y
zZ =2
32— 0212 = B2 — 2 s 3
From Galilean Transformation
x =x—vt
Let % = k(X =V oo d
Inverse Galilean Transformation
x=k(x +vt)
x = k[k(x — vt) + vt ]
E = k(x —vt) + vt

vt =%—k(x—vt)

, X
vt =——kx + kvt

k
- kx+kt
kv v
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kx
¢ -m(_-—)

v
e e (k 1)
p
e x(1 1)
v k?
¢ =kfe-X(1-- 5
TS -

[}
; 2
From equation 3, x2—-cl=x"- Czt

et = - e [e (1 )|
Comparing the coefficients of t2 on both sides,
_CZ — kZUZ o CZkZ
(,'2 = CZkZ _k2v2

6'2 — kZ(CZ _ UZ)
2

k2= = =
c2—-v? q_ v2/ 5
1
. S
1-""/ 2
c
From equation 4,
x =k(x—-vt)
. (x—vt)
2
v
1 52
From equation 5,
t—k[t x(l 1)]_ 1 x() c2 —v?
v k? 2 v ¢4
], = v
2
B 1 x(czﬂ_ f—vxfcz
= S| =
1-v%/, 1-v%/
_vx
t = L=
2
=" 2
Lorentz Transformation Equations
' (x —vt)
2
_v
/1 /o2
y =
zZ =1z
_vx
fles L=

h-,

Length Contraction or Lorentz-Fitzeerald Contraction

Consider two inertial frames of reference S, S f . Frame S r is moving with a velocity V along the positive X-axis relative to the frame
S Let the two frames of reference S, S f coincide at time t = (.

Let a rod of length | is placed in the reference frame S r with its length parallel to X-axis. Co-ordinates of the ends of the rod with
respect to the frames S, S are (xl ) xz) and (xi, xé)
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Time Dilation
Consider two inertial frames of reference S, S " FrameS is moving with a velocity V along the positive X -axis
relative to the frame S. Let the two frames of reference S, S ' coincide at time t = 0.
Let a clock be placed in the frameS.
Time interval in frame S is At = t, — t;
Time interval in frame S Cis At = tzp —t!
From Lorentz Transformation

_vx
/<3
2
1~¥ 2
K o K
LT t [z t Vo th—t At
2 2 2 2
1=V, 1=, 1=V, =Y,
, At
At = T kAt
-/,
o
Case (i): Whenv & ¢ —~0
C
~ At = At
Case(ii): When Vis comparable to C
At > At

Hence the time interval of a moving observer is more than the time interval of a stationery observer.

??2
Case(iii): When v = c, i 1

Whenv > c, At =Complex Number

v’ Hence no object can travel faster than the speed of light.
Einstein’s Mass-Energy Equivalence

From Newton's Second law

_dP _d __dv  dm
A e T
By Work-Energy theorem, work done is equal to the change in kinetic energy.
W =F.dx =dK
dK = F.d —( o dm)d
=F.dx=|m T v 7 X
_ dvd dmd
= mE X +UE X
_md dx rvd dx
A T

=mvdv+vidm

~dK =mvdv+ vidm
Relativistic mass
my

2
g

m =

Physics Minor-II Sem-Mechanics & Properties of Matter-K.V.Ganesh Kumar, Lecturer in Physics 28



2 2 i

m2 _ my _ my _ mpcC
¢ ¢
m%(c? - v?) = m§c?

m2c? — m2v?% = mic?

2mc?dm — (m? 2vdv +v? 2mdm) =0
2mc?dm = (m? 2v dv + v? 2m dm)
cdm =mvdv +v?dm
dK = c?’dm

m
JdKz | dm
my

K= cz(m)ﬂu
K = c*(m —m)
The above equation gives the relativistic kinetic energy of a moving body.

Energy at rest is given by

MG

Total energy

2 m?

E =c*(m—mg) + myc
The above equation gives Einstein’s mass-energy equivalence.
Hence Mass and Energy are not two different physical quantities. Mass can be converted in to energy and vice-
versa.

Addition of Velocities or Transformation of Velocities

I I
Consider two inertial frames of reference S,S . Frame S is moving with a velocity U along the positive X -axis
I
relative to the frame S. Let the two frames of reference S, S coincide at time t = 0.
I
In reference frame S, an object moves a distance dX in time dt. Similarly in reference frame S | the object moves

I I
a distance dX in time dt .

Velocity in Reference frame S U = =
Velocity in Reference frame S " ou = %
From Lorentz Transformation
x =k(x—vt)
t =k(t —"’x/cz)

From Inverse Lorentz Transformation
x=lk(x +vt),t=k(t +vx/‘32),
dx = k(dx' +vdt)),de = k(dt' +V8 / ,)
dx _ k(dx +vdt) _ (dx +vdt)

At (a4 vaE L) (a4 vdx )

E'"FU

T | s

- v dx
o
u+v

The above equation represents the relativistic law of addition of velocities.
I
Case(i): Whenu K C, VKL ¢C
uv

c2
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r
SU=U +v
r
Case(ii): WhenU =C,V=C

c4C 2C
U==——=—=r
1_|_C.C/C2 2
u=¢c¢

Hence addition of velocity of to the velocity of light reproduces the velocity of light.
Michelson-Morley Experiment

M;

’Sﬁfﬁ Ll

Ray 2

Aim: Aim of Michelson-Morley experiment is to determine the velocity of Earth relative to Ether.

Michelson-Morley Interferometer is shown in figure. Light emitted from the monochromatic source S falls
on the half silvered glass plate G. The glass plate G is oriented at an angle of 45° to the incident light. Hence the
light incident on the glass plate G is divided in to two perpendicular beams of light. The two beams of light are
reflected back from the two mirrors My, M, and meet at G to produce interference pattern. The interference
paitern can be observed through the telescopeT .

Since the apparatus is moving with a velocity U along with the Earth, the optical paths of two beams are not equal.
The two beams are reflected at the points A . " instead of A, B and interfere at G ;
FromAGA'D (GA)? = (A D)* + (GD)?

c2t? = I2 + v2t?

l?' - (C?' = v?.)t?.

[ [

V2 —p?

2
£ 1_v/cz

l k.
_ w2 _ v?
=- (1 /Cz) o= (1 + /262)

r

Hence the time taken by the light beam I to reach G

21 2
= = v
t1—2t—c(1+ /ZCZ)

Let be ty the time taken by the light beam 2 to reach the glass plate G B
Velocity of light beam from G to B is (c —v) and from B G is (c +v).
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Time lag between the two beams

21 v?
-2(z=)
lv?
e
lv?
At = =
Iv? [v?
Path dzﬁ";erence =g Al = C.C—3 =iy

lv
Path difference in terms of Wavelength = o2

2
Mirrors My, M, are interchanged by rotating the apparatus by 90°
Iv?
Path difference = — oz 2 2 2
lv lv 2lv
Resultant Path differ =——(——)=
esultant Path difference ro) 102 o2
) ] 212
Hence Fringe Shift An = =z
c

In Michelson-Morley Experiment, | = 10m,v = 3 x 10*m/s ,A =5000 x 1071%m,c =3 x 108 m/s
2 x10 x (3 x10%)2
~An = — =04
5000 x 10710 x (3 x 108)?
Hence a fiinge shift of 0.4 was expected. But Michelson-Morley observed a fringe shift of only 0.001. This is known
as Null Result.

Significance of Null Result:
» Itis impossible to measure the speed of Earth relative to Ether. Hence the concept of Ether is rejected.

» Speed of light in vacuum is the same for all observers.
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