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Unit-I
Vector Analysis
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Scalar Field and Vector field

The value of a physical quantity changes from point to point in space. Every physical quantity
is defined by a point function. The region in which the point function defines the physical quantity is
known as a field.
Scalar field: If the value of a physical quantity at any point in a field is described by a scalar, then the
field is called a scalar field. Scalar field is represented by . In a scalar field, the value of Ø(𝑥, 𝑦, 𝑧)
physical quantity changes only in magnitude from point to point.
Ex: Temperature, Electric Potential, Density etc…
Vector Field: If the value of a physical quantity at any point in a field is described by a vector, then
the field is called a vector field. Vector field is represented by . In a vector field, the value of 𝐴(𝑥, 𝑦, 𝑧)
physical quantity changes both in magnitude and direction from point to point.
Ex: Electric field intensity, Magnetic field intensity, velocity of a particle in a liquid etc..

Gradient of a Scalar Field
Gradient of a scalar field is defined as follows.Ø 𝑥, 𝑦, 𝑧( )

Grad =Ø 𝑖 ∂∅
∂𝑥 + 𝑗 ∂∅

∂𝑦 + 𝑘 ∂∅
∂𝑧 = 𝑖 ∂

∂𝑥 + 𝑗 ∂
∂𝑦 + 𝑘 ∂

∂𝑧( ). ∅ = ∇∅

∇ =Vector Differential Operator≡ 𝑖 ∂
∂𝑥 + 𝑗 ∂

∂𝑦 + 𝑘 ∂
∂𝑧

➔ Gradient of a scalar field is a vector.
Physical significance of grad :Ø

𝑑∅ = ∂∅
∂𝑥 𝑑𝑥 + ∂∅

∂𝑦 𝑑𝑦 + ∂∅
∂𝑧 𝑑𝑧

∇∅. 𝑑𝑟 = 𝑖 ∂∅
∂𝑥 + 𝑗 ∂∅

∂𝑦 + 𝑘 ∂∅
∂𝑧( ). 𝑑𝑥 𝑖 + 𝑑𝑦 𝑗 + 𝑑𝑧 𝑘( )

= ∂∅
∂𝑥 𝑑𝑥 + ∂∅

∂𝑦 𝑑𝑦 + ∂∅
∂𝑧 𝑑𝑧 = 𝑑∅ = 0

∴ ∇∅. 𝑑𝑟 = 0
∇∅⊥𝑑𝑟

1. Direction of grad at any point gives the direction of maximum rate of increase of at thatØ Ø 𝑥, 𝑦, 𝑧( )
point.
2. Magnitude of grad at any point gives the maximum rate of increase of at that point. Ø Ø 𝑥, 𝑦, 𝑧( )

Divergence of a Vector Field
Divergence of a vector field is defined as the dot product of the vector field with Deloperator .𝐴 𝐴 ∇

Div𝐴 = ∇. 𝐴 = 𝑖 ∂
∂𝑥 + 𝑗 ∂

∂𝑦 + 𝑘 ∂
∂𝑧( ). 𝐴

𝑥
𝑖 + 𝐴

𝑦
𝑗 + 𝐴

𝑧
𝑘( ) =  

∂𝐴
𝑥

∂𝑥 +
∂𝐴

𝑦

∂𝑦 +
∂𝐴

𝑧

∂𝑧
➔ Divergence of a vector field is a scalar.

Physical Significance:
Divergence of a vector at any point gives the amount of vector flux emitted per unit volume at that
point.

⮚ If is the velocity of a fluid, then gives that rate of flow of the fluid.𝑣 𝑑𝑖𝑣 𝑣 
✔ If is zero, then the liquid is incompressible.𝑑𝑖𝑣 𝑣 
✔ If is positive, then the liquid is undergoing expansion.𝑑𝑖𝑣 𝑣 
✔ If is negative, then the liquid is undergoing contraction.𝑑𝑖𝑣 𝑣 

Examples:

1. 𝑑𝑖𝑣 𝑗 = ρ
ϵ

0

Here is the electric current density and is the charge density.𝑗 ρ
2. 𝑑𝑖𝑣 𝐵 = 0

Here is the magnetic induction.𝐵 
Curl of a vector field

Curl of a vector field is defined as the cross product of the vector with the del operator.

Curl𝐴 = ∇ × 𝐴 = 𝑖 ∂
∂𝑥 + 𝑗 ∂

∂𝑦 + 𝑘 ∂
∂𝑧( ) × 𝐴

𝑥
𝑖 + 𝐴

𝑦
𝑗 + 𝐴

𝑧
𝑘( )

➔ Curl of a vector field is a vector.
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Significance:
⮚ Curl means rotation. Hence the curl of a vector field gives the rotation of the vector.
✔ If the curl of a vector is zero, then the vector is called irrotational.
✔ If the curl of a vector is non-zero, then the vector has rotation.

⮚ Curl of a vector at any point gives the maximum line integral of the vector around a closed
curve at that point.

Examples:

1. 𝐶𝑢𝑟𝑙𝑣 = 2ω
Here is linear velocity and is angular velocity𝑣 ω

2. 𝐶𝑢𝑟𝑙𝐵 = µ
0
𝐽

Here is the magnetic induction and is the current density.𝐵 𝐽
Line integral

Consider a curve AB as shown in figure. Consider a small element of length dl on the curve AB. Let

be a vector at the point P. Let be the angle between the vectors and the element .θ 𝐴 𝑑𝑙

Then the line integral of the vector along the curve AB is given by𝐴

𝐴

𝐵

∫ 𝐴. 𝑑𝑙 = ∬
𝐴
𝐵𝐴 cos 𝑐𝑜𝑠 θ 𝑑𝑙

If and𝐴 = 𝐴
𝑥
𝑖 + 𝐴

𝑦
𝑗 + 𝐴

𝑥
𝑘 𝑑𝑙 = 𝑑𝑥 𝑖 + 𝑑𝑦 𝑗 + 𝑑𝑧 𝑘

Then
𝐴

𝐵

∫ 𝐴. 𝑑𝑙 =
𝐴

𝐵

∫ 𝐴
𝑥
𝑑𝑥 + 𝐴

𝑦
𝑑𝑦 + 𝐴

𝑥
𝑑𝑧( )

Example:

∫ 𝐵. 𝑑𝑙 = µ
0
𝐼

Where is the magnetic field and I is the electric current.𝐵
Surface Integral

Consider a surface S. Consider a small element of area ds on the surface S. Let be a vector at the𝐴
point ‘P’. Let be the angle between the vectors and the normal to the element .θ 𝐴 𝑑𝑠
Then the surface integral of the vector over the surface S is given by𝐴

∬ 𝐴. 𝑑𝑠 = ∬ 𝐴 cos 𝑐𝑜𝑠 θ 𝑑𝑠
Example:

∬ 𝐵. 𝑑𝑠 = 0

Where is the magnetic field.𝐵
Gauss Divergence Theorem

Statement: Surface integral of a vector over a closed surface is equal to the volume integral of𝐴 𝑆
the divergence of the vector over the volume bounded by the surface .𝐴 𝑉 𝑆

∬
𝑆
𝐴. 𝑑𝑆 = ∭

𝑉
𝑑𝑖𝑣𝐴 𝑑𝑉

Proof:
Consider a volume enclosed by a closed surface . Let us divide the volume into a large𝑉 𝑆 𝑉

number of small volume elements . Let us assume that the volume element is in the shape of𝑑𝑉
parallelepiped. Let be the lengths of parallelepiped along axes. The vector is𝑑𝑥, 𝑑𝑦, 𝑑𝑧 𝑋, 𝑌, 𝑍  𝐴
acting along the face as shown in figure.𝐴𝐵𝐶𝐷
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Area of the face 𝐴𝐵𝐶𝐷 = 𝑑𝑦 𝑑𝑧
Hence the amount of flux entering the parallelepiped through the face is given by𝐴𝐵𝐶𝐷 

=  𝐴
𝑥

𝑃
1( ) 𝑑𝑦 𝑑𝑧

Similarly the amount of flux leaving the parallelepiped along the face is given by𝐸𝐹𝐺𝐻 
=  𝐴

𝑥
𝑃

2( ) 𝑑𝑦 𝑑𝑧
Since the length of the parallelepiped is very small

𝐴
𝑥

𝑃
2( ) = 𝐴

𝑥
𝑃

1( ) +
∂𝐴

𝑥

∂𝑥  𝑑𝑥
Hence the net amount of flux

= 𝐴
𝑥

𝑃
2( ) 𝑑𝑦 𝑑𝑧 − 𝐴

𝑥
𝑃

1( ) 𝑑𝑦 𝑑𝑧

= 𝐴
𝑥

𝑃
1( ) +

∂𝐴
𝑥

∂𝑥  𝑑𝑥( )𝑑𝑦 𝑑𝑧 − 𝐴
𝑥

𝑃
1( ) 𝑑𝑦 𝑑𝑧

= 𝐴
𝑥

𝑃
1( ) 𝑑𝑦 𝑑𝑧 +

∂𝐴
𝑥

∂𝑥  𝑑𝑥 𝑑𝑦 𝑑𝑧 − 𝐴
𝑥

𝑃
1( ) 𝑑𝑦 𝑑𝑧

=
∂𝐴

𝑥

∂𝑥  𝑑𝑥 𝑑𝑦 𝑑𝑧
Net amount of flux along X-axis is given by

=
∂𝐴

𝑥

∂𝑥  𝑑𝑥 𝑑𝑦 𝑑𝑧
Similarly the net amount of flux along Y-axis is given by

=
∂𝐴

𝑦

∂𝑦  𝑑𝑥 𝑑𝑦 𝑑𝑧
Similarly the net amount of flux along Z-axis is given by

=
∂𝐴

𝑧

∂𝑧  𝑑𝑥 𝑑𝑦 𝑑𝑧
Hence the total amount of flux leaving the volume element is given by𝑑𝑉

=
∂𝐴

𝑥

∂𝑥  𝑑𝑥 𝑑𝑦 𝑑𝑧 +
∂𝐴

𝑦

∂𝑦  𝑑𝑥 𝑑𝑦 𝑑𝑧 +
∂𝐴

𝑧

∂𝑧  𝑑𝑥 𝑑𝑦 𝑑𝑧

=
∂𝐴

𝑥

∂𝑥 +
∂𝐴

𝑦

∂𝑦 +
∂𝐴

𝑧

∂𝑧( )𝑑𝑥 𝑑𝑦 𝑑𝑧

=
∂𝐴

𝑥

∂𝑥 +
∂𝐴

𝑦

∂𝑦 +
∂𝐴

𝑧

∂𝑧( )𝑑𝑉

= 𝑑𝑖𝑣𝐴𝑑𝑉
∴∬

𝑆
𝐴. 𝑑𝑆 = 𝑑𝑖𝑣𝐴𝑑𝑉

Amount of flux leaving the total volume is equal to the total flux from all the volume elements .𝑉 𝑑𝑉

∴∬
𝑆
𝐴. 𝑑𝑆 = ∭

𝑉
𝑑𝑖𝑣𝐴 𝑑𝑉

This is known as Gauss divergence theorem.
Stokes Theorem

Statement:Line integral of a vector around a closed curve is equal to the surface integral of the𝐴 𝐶
curl of the vector over the surface bounded by the curve𝐴 𝐶

𝐶
∮ 𝐴.𝑑𝑟 = ∬

𝑆
𝐶𝑢𝑟𝑙 𝐴. 𝑑𝑆
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Proof:
Line integral of the vector around the closed curve𝐴 𝐶

𝐿 =
𝐶
∮ 𝐴.𝑑𝑟

Let us divided the curve in to two parts by the line . Hence the area enclosed by the curve𝐶 𝐶
1
, 𝐶

2 
 𝑝𝑞 𝐶

is divided into two parts.Let be the line integral of the vector around the curve and be the line𝐿
1 

𝐶
1

𝐿
2 

integral of the vector around the curve . 𝐶
2 

𝐿 = 𝐿
1 

+ 𝐿
2 

Since the line integral around the curve is from p to q and the line integral around the curve is 𝐶
1

𝐶
2 

from q to p. Hence the line integral along the line need not be considered.𝑝𝑞

Let us divide the area enclosed by the curve in to a large number of small area elements𝐶
. These area elements .are enclosed by the curves𝑑𝑆

1
, 𝑑𝑆

2
, 𝑑𝑆

3
, …….  𝑑𝑆

1
, 𝑑𝑆

2
, 𝑑𝑆

3
, ……. 𝐶

1
, 𝐶

2
, 𝐶

3
……… 

𝐶
∮ 𝐴.𝑑𝑟 = ∑

𝐶
𝑛

∮ 𝐴.𝑑𝑟

We know that the line integral of a vector at a point is equal to the maximum line integral of the𝐴
vector around the curve at that point. Hence the line integral of the vector around the curve𝐴
enclosing the element is given by𝑑𝑆

1 

…………..1
𝐶

1

∮ 𝐴.𝑑𝑟 = ∇ × 𝐴( ). 𝑑𝑆
1

The total value of line integral is obtained by adding all the integrals on the left hand side of equation

………………..2
𝐶

1

∮ 𝐴.𝑑𝑟 +
𝐶

2

∮ 𝐴.𝑑𝑟 +
𝐶

3

∮ 𝐴.𝑑𝑟 + ………. =
𝐶
∮ 𝐴.𝑑𝑟

Similarly adding the integrals on the right hand side of the equation we get the total value of the
surface integral over all the surfaces∇ × 𝐴( ). 𝑑𝑆 𝑑𝑆

1
, 𝑑𝑆

2
, 𝑑𝑆

3
, …….  

………….3∬
𝑆

∇ × 𝐴( ). 𝑑𝑆
From equations 2 and 3

𝐶
∮ 𝐴.𝑑𝑟 = ∬

𝑆
∇ × 𝐴( ). 𝑑𝑆

This is called Stokes Theorem.
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UNIT-II
Mechanics of particles

Newton’s laws of motion
Newton’s first law:
Every body continues to be in a state of rest or uniform motion unless it is acted by an external force.
Newton’s second law:
The net external force acting on a body is directly proportional to the rate of change of momentum.

𝐹 = 𝑑𝑃
𝑑𝑡 = 𝑑

𝑑𝑡 𝑚𝑣( ) = 𝑚 𝑑𝑣
𝑑𝑡 = 𝑚𝑎

𝐹 = 𝑚𝑎
Newton’s third law:
Every action has an equal and opposite reaction.

𝐹
12

=− 𝐹
21

Equation of motion of a system of variable mass
If the mass of a system changes with time without remaining constant, such a system is known

as a system of variable mass. Motion of the rocket is an example of a system of variable mass. When
the fuel inside the combustion chamber of a rocket is burnt, the burnt gases are ejected from the
rocket in the form of a gas jet with high velocity in backward direction. As a result, the mass of the
rocket decreases gradually and its velocity increases.

Consider a system of mass moving with velocity as shown in figure. After a time , a mass is𝑀 𝑣  ∆𝑡 ∆𝑀
ejected from the system with velocity . As a result, mass of the system is reduced to and 𝑢 𝑀 − ∆𝑀( )
its velocity increased to .𝑣 + ∆𝑣( )

Initial momentum 𝑃
𝑖

= 𝑀𝑣

Final momentum 𝑃
𝑓

= 𝑀 − ∆𝑀( ) 𝑣 + ∆𝑣( ) + ∆𝑀𝑢

Change in momentum ∆𝑃 = 𝑃
𝑓

− 𝑃
𝑖

= 𝑀 − ∆𝑀( ) 𝑣 + ∆𝑣( ) + ∆𝑀𝑢 − 𝑀𝑣
According to Newton’s second law

𝐹
𝑒𝑥𝑡

= 𝑑𝑃
𝑑𝑡 = ∆𝑃

∆𝑡 = 𝑀−∆𝑀( ) 𝑣+∆𝑣( )+∆𝑀𝑢−𝑀𝑣
∆𝑡 = 𝑀𝑣+𝑀∆𝑣−𝑣∆𝑀−∆𝑣∆𝑀+∆𝑀𝑢−𝑀𝑣

∆𝑡

𝐹
𝑒𝑥𝑡

=𝑀 ∆𝑣
∆𝑡 − 𝑣 ∆𝑀

∆𝑡 − ∆𝑣 ∆𝑀
∆𝑡 + 𝑢 ∆𝑀

∆𝑡

𝐼𝑓  ∆𝑡→0,  𝑡ℎ𝑒𝑛  ∆𝑣
∆𝑡 = 𝑑𝑣

𝑑𝑡 ,    ∆𝑀
∆𝑡 =− 𝑑𝑀

𝑑𝑡 ,  ∆𝑣≈0  

𝐹
𝑒𝑥𝑡

= 𝑀 𝑑𝑣
𝑑𝑡 + 𝑣 𝑑𝑀

𝑑𝑡 − 𝑢 ∆𝑀
∆𝑡 = 𝑑

𝑑𝑡 𝑀𝑣( ) − 𝑢 ∆𝑀
∆𝑡

𝐹
𝑒𝑥𝑡

= 𝑑
𝑑𝑡 𝑀𝑣( ) − 𝑢 ∆𝑀

∆𝑡

The above equation represents the equation of motion of a system of variable mass.

𝐹
𝑒𝑥𝑡

= 𝑀 𝑑𝑣
𝑑𝑡 + 𝑣 𝑑𝑀

𝑑𝑡 − 𝑢 ∆𝑀
∆𝑡

𝑀 𝑑𝑣
𝑑𝑡 = 𝐹

𝑒𝑥𝑡
+ 𝑢 ∆𝑀

∆𝑡 − 𝑣 𝑑𝑀
𝑑𝑡

𝑀 𝑑𝑣
𝑑𝑡 = 𝐹

𝑒𝑥𝑡
+ 𝑢 − 𝑣( ) 𝑑𝑀

𝑑𝑡
Reaction force or thrust acting on the rocket is given by

𝐹
𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛

= 𝑢 − 𝑣( ) 𝑑𝑀
𝑑𝑡

𝑀 𝑑𝑣
𝑑𝑡 = 𝐹

𝑒𝑥𝑡
+ 𝐹

𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛
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Expression for final velocity of a rocket

Motion of the rocket is an example of a system of variable mass. When the fuel in the
combustion chamber of a rocket is burnt, pressure inside the chamber increases. Hence the hot
gases inside the combustion chamber are ejected from the rocket in the form of a gas jet with high
velocity in backward direction through a nozzle. Hence mass of the rocket decreases gradually due to
the ejected gases and its velocity increases.

Consider a rocket of mass moving with a velocity at time as shown in figure. After a time𝑀 𝑣 𝑡 
, fuel of mass is ejected from the rocket with a velocity in the form of a gas jet. Hence the∆𝑡 𝑑𝑀 𝑢

velocity of the gas jet relative to the laboratory frame of reference is 𝑣 − 𝑢( ).
Relative velocity 𝑣

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒
= 𝑣 − 𝑢

Reaction force on the rocket

𝐹
𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛

= 𝑣 − 𝑢( ) 𝑑𝑀
𝑑𝑡

External force on the rocket
𝐹

𝑒𝑥𝑡
=− 𝑀𝑔

Hence the resultant force on the rocket in upward direction
𝐹 = 𝐹

𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛
+ 𝐹

𝑒𝑥𝑡

𝐹 = 𝑣 − 𝑢( ) 𝑑𝑀
𝑑𝑡 − 𝑀𝑔

According to Newton’s second law

𝐹 = 𝑑𝑃
𝑑𝑡 = 𝑑

𝑑𝑡 𝑀𝑣( )
𝑑
𝑑𝑡 𝑀𝑣( ) = 𝑣 − 𝑢( ) 𝑑𝑀

𝑑𝑡 − 𝑀𝑔

𝑀 𝑑𝑣
𝑑𝑡 + 𝑣 𝑑𝑀

𝑑𝑡 = 𝑣 𝑑𝑀
𝑑𝑡 − 𝑢 𝑑𝑀

𝑑𝑡 − 𝑀𝑔

𝑀 𝑑𝑣
𝑑𝑡 =− 𝑢 𝑑𝑀

𝑑𝑡 − 𝑀𝑔
𝑑𝑣
𝑑𝑡 =− 𝑢

𝑀
𝑑𝑀
𝑑𝑡 − 𝑔

𝑑𝑣 =− 𝑢 𝑑𝑀
𝑀 − 𝑔𝑑𝑡

Let be the initial final velocities and be the initial and final masses of the rocket. Integrating𝑣
0
, 𝑣 𝑀

0
,  𝑀 

the above equation on both sides

𝑣
0

𝑣

∫ 𝑑𝑣 =− 𝑢 
𝑀

0

𝑀

∫ 𝑑𝑀
𝑀 − 𝑔 

0

𝑡

∫ 𝑑𝑡

𝑣( )
𝑣

0

𝑣 =− 𝑢 𝑙𝑜𝑔 𝑀 ( )
𝑀

0

𝑀 − 𝑔 𝑡( )
0
𝑡

𝑣 − 𝑣
0

=− 𝑢 𝑙𝑜𝑔 𝑀 − 𝑙𝑜𝑔 𝑀
0
 ( ) − 𝑔𝑡

𝑣 − 𝑣
0

=− 𝑢𝑙𝑜𝑔 𝑀
𝑀

0
− 𝑔𝑡 

𝑣 − 𝑣
0

= 𝑢𝑙𝑜𝑔 
𝑀

0

𝑀 − 𝑔𝑡 

𝑣 = 𝑣
0

+ 𝑢𝑙𝑜𝑔 
𝑀

0

𝑀 − 𝑔𝑡 

The above expression represents the final velocity of the rocket.
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Case(i):
Ignoring gravity, 𝑔≈0

𝑣 = 𝑣
0

+ 𝑢𝑙𝑜𝑔 
𝑀

0

𝑀  
Case(ii):
If the initial velocity of the rocket is zeroi.e 𝑣

0
= 0

𝑣 = 𝑢𝑙𝑜𝑔 
𝑀

0

𝑀  
Two dimensional elastic collision

Let a particle of mass moving with velocity collides with another particle of mass at𝑚
1

𝑢
1

𝑚
2

rest. After collision, mass is scattered at an angle with the original direction. Similarly mass is𝑚
1

θ
1

𝑚
2

scattered through an angle . Let be the velocities of the two masses after collision. θ
2

𝑣
1
, 𝑣

2
Applying law of conservation of linear momentum along 𝑋 − 𝑎𝑥𝑖𝑠,

𝑚
1
𝑢

1
+ 0 = 𝑚

1
𝑣

1
𝑐𝑜𝑠 θ

1
 + 𝑚

2
𝑣

2
𝑐𝑜𝑠 θ

2
 

………………1𝑚
1
𝑢

1
= 𝑚

1
𝑣

1
𝑐𝑜𝑠 θ

1
 + 𝑚

2
𝑣

2
𝑐𝑜𝑠 θ

2
 

Similarly, applying law of conservation of linear momentum along 𝑌 − 𝑎𝑥𝑖𝑠
0 = 𝑚

1
𝑣

1
𝑠𝑖𝑛 θ

1
 − 𝑚

2
𝑣

2
𝑠𝑖𝑛 θ

2
 

………………2𝑚
1
𝑣

1
𝑠𝑖𝑛 θ

1
=  𝑚

2
𝑣

2
𝑠𝑖𝑛 θ

2
 

According to law of conservation of kinetic energy,
1
2 𝑚

1
𝑢

1
2 + 0 = 1

2 𝑚
1
𝑣

1
2 + 1

2 𝑚
2
𝑣

2
2

………………3𝑚
1
𝑢

1
2 = 𝑚

1
𝑣

1
2 + 𝑚

2
𝑣

2
2

Let to solve the above equations.𝑚
1

= 𝑚
2

From eqn 1

………………4𝑢
1

= 𝑣
1
𝑐𝑜𝑠 θ

1
 + 𝑣

2
𝑐𝑜𝑠 θ

2
 

From eqn 2
………………5𝑣

1
𝑠𝑖𝑛 θ

1
 = 𝑣

2
𝑠𝑖𝑛 θ

2
 

From eqn 3
………………6𝑢

1
2 = 𝑣

1
2 + 𝑣

2
2

From eqn 4
………………7𝑢

1
− 𝑣

1
𝑐𝑜𝑠 θ

1
 = 𝑣

2
𝑐𝑜𝑠 θ

2
 

Squaring on both sides,

𝑢
1

− 𝑣
1
𝑐𝑜𝑠 θ

1
 ( )2 = 𝑣

2
2 𝑐𝑜𝑠2θ

2
 

𝑢
1
2 + 𝑣

1
2 𝑐𝑜𝑠2θ

1
− 2𝑢

1
𝑣

1
𝑐𝑜𝑠θ

1
=𝑣

2
2 𝑐𝑜𝑠2θ

2

From eqn 5
𝑣

1
𝑠𝑖𝑛 θ

1
 = 𝑣

2
𝑠𝑖𝑛 θ

2
 

Squaring on both sides
…………8

Adding eqns 7 and 8
𝑢

1
2 + 𝑣

1
2 − 2𝑢

1
𝑣

1
𝑐𝑜𝑠 θ

1
 = 𝑣

2
2 

From eqn 6
𝑢

1
2 = 𝑣

1
2 + 𝑣

2
2

𝑣
1
2 + 𝑣

2
2 + 𝑣

1
2 − 2𝑢

1
𝑣

1
𝑐𝑜𝑠 θ

1
 = 𝑣

2
2

2𝑣
1
2 − 2𝑢

1
𝑣

1
𝑐𝑜𝑠 θ

1
 = 0
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𝑣
1

− 𝑢
1
𝑐𝑜𝑠 θ

1
 = 0

…………9𝑣
1

= 𝑢
1
𝑐𝑜𝑠 θ

1
 

From eqn 6
𝑣

2
2 = 𝑢

1
2 − 𝑢

1
2𝑐𝑜𝑠2θ

1
= 𝑢

1
2𝑠𝑖𝑛2θ

1
 

…………10𝑣
2

= 𝑢
1
𝑠𝑖𝑛 θ

1
 

From eqns 9, 10 it is clear that are normal components of .𝑣
1
, 𝑣

2
 𝑢

1

θ
1

+ θ
2

= 900

Hence in a perfectly elastic collision between two particles of equal masses, when one particle is
initially at rest, the two particles always move off right angles to each other after collision.

Impact Parameter

Consider an alpha particle of mass and charge moving towards a nucleus of charge in𝑚 + 2𝑒  + 𝑍𝑒 
direction. Alpha particle follows a hyperbolic path instead of a straight path due to𝐴𝑋 𝐴𝐶𝐵 𝐴𝑋

Coulomb's repulsion of the nucleus. is the perpendicular distance from nucleus to the initial𝑝 𝑁 
direction of the alpha particle. This is known as the Impact parameter. Hence Impact parameter can
be defined as follows.

⮚ Impact parameter is defined as the perpendicular distance from the nucleus to the initial𝑝( ) 
direction of the projected alpha particle.

If Impact parameter then the collision is known as direct collision. In this case, the scattering𝑝 = 0,  
angle .∅ = 0

Collision cross-section (or) Scattering cross-section

When alpha particles are incident on a thin gold foil, they are scattered in different directions.
Let be the incident intensity of the alpha particles. Let be the number of alpha particles𝑁 𝑑𝑁
scattered in to solid angle . The ratio of number of alpha particles scattered in to solid angle 𝑑ω 𝑑ω
and the incident intensity is known as the Impact parameter.

Scattering cross-section σ( ) = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑝ℎ𝑎 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑 𝑖𝑛𝑡𝑜 𝑠𝑜𝑙𝑖𝑑 𝑎𝑛𝑔𝑙𝑒 𝑑ω 
𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

σ = 𝑑𝑁
𝑁
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Rutherford’s Scattering Cross-section

Consider a narrow beam of alpha particles incident normally on a gold foil as shown in figure.
Alpha particles are scattered in different directions due to coulomb’s repulsive force of the nucleus.
A fluorescent screen is used to detect the scattered alpha particles. Let be the thickness of the(𝑆)  𝑡
gold foil and be the number of atoms per unit volume. Let be the number of alpha particles𝑁 𝑄 
incident on the gold foil per unit area. Any alpha particle which comes within a distance of impact
parameter from the nucleus will be scattered through an angle . Hence in order to calculate the𝑝( )  ∅
number of alpha particles scattered through an angle . Let us imagine a circle of radius equal to the∅

impact parameter around each nucleus. Total area of all such circles is π𝑝2𝑛𝑡.
⮚ Probable number of alpha particles which can come within a distance from the nucleus𝑝

.= π𝑝2𝑛𝑡𝑄
⮚ Number of alpha particles having impact parameter between and𝑝 𝑝 + 𝑑𝑝

= 𝑑 π𝑝2𝑛𝑡𝑄( ) = 2π𝑝𝑛𝑡𝑄𝑑𝑝
⮚ Hence the number of alpha particles having scattered through an angle between and∅ ∅ + 𝑑∅

= 2π𝑝𝑛𝑡𝑄𝑑𝑝
Scattering cross-section σ( ) = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑝ℎ𝑎 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑 𝑖𝑛 𝑡𝑜 𝑠𝑜𝑙𝑖𝑑 𝑎𝑛𝑔𝑙𝑒 𝑑ω 

𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

Solid angle between and∅ ∅ + 𝑑∅ = 2π𝑠𝑖𝑛 ∅ 𝑑∅
⮚ Hence number of alpha particles scattered in to solid angle 𝑑ω

= σ 𝐼 𝑑ω =  σ 𝐼 2π𝑠𝑖𝑛 ∅ 𝑑∅
This value should be equal to the number of alpha particles having impact parameter between and𝑝
𝑝 + 𝑑𝑝.

⮚ Number of alpha particles having impact parameter between and𝑝 𝑝 + 𝑑𝑝
= 2π𝑝 𝑑𝑝

Number of incident alpha particles = 2π𝑝 𝑑𝑝. 𝐼
∴   σ 𝐼 2π𝑠𝑖𝑛 ∅ 𝑑∅ =− 2π𝑝 𝑑𝑝. 𝐼
σ = −2π𝑝 𝑑𝑝.𝐼

2π𝑠𝑖𝑛 ∅ 𝑑∅.𝐼 =− 𝑝 𝑑𝑝
𝑠𝑖𝑛 ∅ 𝑑∅

σ =− 𝑝 𝑑𝑝
𝑠𝑖𝑛 ∅ 𝑑∅

𝑝 = 𝑍𝑒2

2πϵ
0
𝑚𝑣

0
2 𝑐𝑜𝑡 ∅

2  

𝑑𝑝 = 𝑍𝑒2

2πϵ
0
𝑚𝑣

0
2 − 1

2 𝑐𝑜𝑠𝑒𝑐2 ∅
2  𝑑∅( )

σ =
𝑍𝑒2

2πϵ
0
𝑚𝑣

0
2( )2

𝑐𝑜𝑡 ∅
2 − 1

2 𝑐𝑜𝑠𝑒𝑐2 ∅
2  𝑑∅( )

𝑠𝑖𝑛 ∅ 𝑑∅ =
𝑍𝑒2

2πϵ
0
𝑚𝑣

0
2( )2

𝑐𝑜𝑡 ∅
2 − 1

2 𝑐𝑜𝑠𝑒𝑐2 ∅
2  𝑑∅( )

2𝑠𝑖𝑛 ∅
2 𝑐𝑜𝑠 ∅

2  𝑑∅

σ = 𝑍2𝑒4

16π2ϵ
0
2𝑚2𝑣

0
4𝑠𝑖𝑛4 ∅

2  

This is known as Rutherford’ Scattering cross-section.
Rutherford’s scattering formula:
Number of alpha particles scattered through an angle between and∅ ∅ + 𝑑∅

= 2π𝑝𝑛𝑡𝑄𝑑𝑝
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Substituting the values of and in the above equation,𝑝 𝑝 + 𝑑𝑝
Number of alpha particles scattered through angle between and∅ ∅ + 𝑑∅

= 2π𝑛𝑡𝑄 𝑍𝑒2

2πϵ
0
𝑚𝑣

0
2 𝑐𝑜𝑡 ∅

2  ( ) 𝑍𝑒2

2πϵ
0
𝑚𝑣

0
2 − 1

2 𝑐𝑜𝑠𝑒𝑐2 ∅
2  𝑑∅( )⎡⎢⎢⎣

⎤⎥⎥⎦
These particles strike the screen in a circular annulus of area(𝑆) 𝑑𝐴

𝑑𝐴 = 2π𝑟𝑠𝑖𝑛 ∅ 𝑟𝑑∅ = 2π𝑟2𝑠𝑖𝑛 ∅ 𝑑∅ = 4π𝑟2𝑠𝑖𝑛 ∅
2  𝑐𝑜𝑠 ∅

2   𝑑∅
Number of alpha particles incident on the screen per unit area

𝑁 =
2π𝑛𝑡𝑄 𝑍𝑒2

2πϵ
0
𝑚𝑣

0
2 𝑐𝑜𝑡 ∅

2  ( ) 𝑍𝑒2

2πϵ
0
𝑚𝑣

0
2 − 1

2 𝑐𝑜𝑠𝑒𝑐2 ∅
2  𝑑∅( )⎡⎢⎢⎣

⎤⎥⎥⎦
4π𝑟2𝑠𝑖𝑛 ∅

2  𝑐𝑜𝑠 ∅
2   𝑑∅

𝑁 = 𝑄𝑛𝑡𝑍2𝑒4

16π2ϵ
0
2𝑟2𝑚

2
𝑣

0
4𝑠𝑖𝑛4 ∅

2  

This is known as Rutherford’s scattering formula.
Hence from the above equation, it is clear that the number of alpha particles scattered per unit area is

● Inversely proportional to 𝑠𝑖𝑛4 ∅
2

● Directly proportional to the thickness of gold foil '𝑡'
● Directly proportional to the square of the atomic number of the scatterer'𝑍' 
● Inversely proportional to the square of the kinetic energy of the alpha particle.
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Unit-III
Mechanics of Continuous media

Elasticity:
When external deformation forces are applied on a body, its size and shape change. The

property of a body to regain its original shape and size when the external forces are removed is
known as Elasticity.

Elastic Moduli of Isotropic Solids
⮚ Young’s Modulus 𝑌( )
⮚ Bulk Modulus 𝐾( )
⮚ Rigidity Modulus η( )
⮚ Poisson’s Ratio σ( )

Young’s Modulus :𝑌( )
⮚ Ratio of Longitudinal Stress to Longitudinal Strain is called Young’s Modulus.

Young’s Modulus =𝑌( )
𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑆𝑡𝑟𝑒𝑠𝑠
𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑆𝑡𝑟𝑎𝑖𝑛

Consider a rod of length and cross sectional area .Let be the change in length of the rod when a𝑙 𝑎 δ𝑙 
force is applied along its length.𝐹 

Longitudinal Stress = 𝐹
𝑎

Longitudinal Strain = δ𝑙
𝑙

Young’s Modulus =𝑌( )
𝐹
𝑎
δ𝑙
𝑙

= 𝐹𝑙
𝑎δ𝑙

Bulk Modulus :𝐾( )
⮚ Ratio of Normal Stress to Volume Strain is known as Bulk modulus.

Bulk Modulus 𝐾( ) = 𝑁𝑜𝑟𝑚𝑎𝑙 𝑆𝑡𝑟𝑒𝑠𝑠
𝑉𝑜𝑙𝑢𝑚𝑒 𝑆𝑡𝑟𝑎𝑖𝑛

Consider a body of Volume and Cross sectional area . Let be the change in volume when a𝑉  𝑎 δ𝑉 
normal force is applied over the entire surface of the body.𝐹 

Normal Stress= 𝐹
𝑎

Volume Strain= δ𝑉
𝑉

Bulk Modulus 𝐾( ) =
𝐹
𝑎

δ𝑉
𝑉

= 𝐹𝑉
𝑎δ𝑉

Rigidity Modulus :η( )
⮚ Ratio of Shearing Stress to Shearing Strain is called Rigidity modulus.

Rigidity Modulus η( ) = 𝑆ℎ𝑒𝑎𝑟𝑖𝑛𝑔 𝑆𝑡𝑟𝑒𝑠𝑠
𝑆ℎ𝑒𝑎𝑟𝑖𝑛𝑔 𝑆𝑡𝑟𝑎𝑖𝑛

Consider a body of Cross sectional area . Let be the angle of deformation when a shearing force𝑎 θ 
is applied to it.𝐹 

Rigidity Modulus η( ) =
𝐹
𝑎

θ
Poisson’s Ratio :σ( )

⮚ Ratio of Transverse Strain to Longitudinal Strain is called Poisson’s ratio.

Poisson’s Ratio =σ( )
𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑆𝑡𝑟𝑎𝑖𝑛

𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑆𝑡𝑟𝑎𝑖𝑛
Consider a wire of length and diameter . Let be the increase in length and be the decrease in𝑙 δ𝑙 δ𝐷
diameter when a force is applied to it.𝐹

Poisson’s Ratio σ( ) =
δ𝐷
𝐷
δ𝑙
𝑙

= 𝑙 δ𝐷
𝐷 δ𝑙
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Relation between Elastic Moduli or Elastic Constants

Consider a unit cube as shown in figure. Let the faces of the cube are parallel to the coordinate axes
. Let a Normal Stress is acting on all the six faces in an outward direction.𝑋, 𝑌, 𝑍 𝑃

Young’s Modulus =𝑌( ) 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑆𝑡𝑟𝑒𝑠𝑠
𝐿𝑂𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑆𝑡𝑟𝑎𝑖𝑛

𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑆𝑡𝑟𝑎𝑖𝑛 = 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑆𝑡𝑟𝑒𝑠𝑠
𝑌𝑜𝑢𝑛𝑔’𝑠 𝑀𝑜𝑑𝑢𝑙𝑢𝑠 =

𝑃
1

𝑌 = 𝑃
𝑌

Expansion along axis𝑋 = 𝑃
𝑌

Poisson’s Ratio =σ( ) 𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑆𝑡𝑟𝑎𝑖𝑛
𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑆𝑡𝑟𝑎𝑖𝑛

𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 𝑆𝑡𝑟𝑎𝑖𝑛 = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛'𝑠 𝑟𝑎𝑡𝑖𝑜 × 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑆𝑡𝑟𝑎𝑖𝑛 = σ 𝑃
𝑌

Compression along axes𝑌, 𝑍  = σ 𝑃
𝑌

Hence due to the Normal Stress along X-axis𝑃

Expansion along axis𝑋 = 𝑃
𝑌

Compression along axes𝑌, 𝑍  = σ 𝑃
𝑌

Stress
Strain

axis𝑋 axis𝑌 axis𝑍
𝑆𝑡𝑟𝑒𝑠𝑠 𝑎𝑙𝑜𝑛𝑔 𝑋 − 𝑎𝑥𝑖𝑠 𝑃

𝑌 − σ 𝑃
𝑌 − σ 𝑃

𝑌

𝑆𝑡𝑟𝑒𝑠𝑠 𝑎𝑙𝑜𝑛𝑔 𝑌 − 𝑎𝑥𝑖𝑠 − σ 𝑃
𝑌

𝑃
𝑌 − σ 𝑃

𝑌

𝑆𝑡𝑟𝑒𝑠𝑠 𝑎𝑙𝑜𝑛𝑔 𝑍 − 𝑎𝑥𝑖𝑠 − σ 𝑃
𝑌 − σ 𝑃

𝑌
𝑃
𝑌

Relation between Bulk Modulus and Young’s Modulus:
Let be the expansions along axes due all the normal forces.𝑒

𝑥
, 𝑒

𝑦
, 𝑒

𝑧 
𝑋, 𝑌, 𝑍

𝑒
𝑥

= 𝑃
𝑌 − σ 𝑃

𝑌 −  σ 𝑃
𝑌 = 𝑃

𝑌 − 2σ 𝑃
𝑌 = 𝑃

𝑌 1 − 2σ( )

𝑒
𝑥

= 𝑃
𝑌 1 − 2σ( )

𝑒
𝑦

= 𝑃
𝑌 1 − 2σ( )

𝑒
𝑧

= 𝑃
𝑌 1 − 2σ( )

Hence Longitudinal Strain in any direction= 𝑃
𝑌 1 − 2σ( )

Volume Strain = 3× 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑆𝑡𝑟𝑎𝑖𝑛 = 3 𝑃
𝑌 1 − 2σ( )

Bulk Modulus 𝐾( ) = 𝑁𝑜𝑟𝑚𝑎𝑙 𝑆𝑡𝑟𝑒𝑠𝑠
𝑉𝑜𝑙𝑢𝑚𝑒 𝑆𝑡𝑟𝑎𝑖𝑛

𝐾 = 𝑃
3 𝑃

𝑌 1−2σ( )
= 𝑌

3 1−2σ( )

𝑌 = 3𝐾(1 − 2σ)
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Relation between Rigidity Modulus and Poisson’s ratio:

Consider a unit cube as shown in figure. Let an expansive stress is acting along axis and a𝑃 𝑋
compressive stress is acting along axis on the unit cube.𝑃 𝑌 
Let be the expansions along axes due all the normal forces.𝑒

𝑥
, 𝑒

𝑦
, 𝑒

𝑧 
𝑋, 𝑌, 𝑍

𝑒
𝑥

= 𝑃
𝑌 + σ 𝑃

𝑌 = 𝑃
𝑌 1 + σ( )

𝑒
𝑦

=− 𝑃
𝑌 − σ 𝑃

𝑌 =− 𝑃
𝑌 1 + σ( )

𝑒
𝑧

=− σ 𝑃
𝑌 + σ 𝑃

𝑌 = 0
Hence equal amounts of expansive and compressive strains are produced along axes. These𝑋, 𝑌
two mutually perpendicular expansive and compressive strains produce a shearing strain.

Shearing Strain  θ = 3× 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑆𝑡𝑟𝑎𝑖𝑛 = 2 𝑃
𝑌 1 + σ( )

Rigidity Modulus η( ) = 𝑆ℎ𝑒𝑎𝑟𝑖𝑛𝑔 𝑆𝑡𝑟𝑒𝑠𝑠
𝑆ℎ𝑒𝑎𝑟𝑖𝑛𝑔 𝑆𝑡𝑟𝑎𝑖𝑛 = 𝑃

θ = 𝑃
2 𝑃

𝑌 1+σ( )
= 𝑌

2 1+σ( )

η = 𝑌
2 1+σ( )

𝑌 = 2η 1 + σ( )
Relation between Elastic Moduli

𝑌 = 3𝐾 1 − 2σ( )⇒ 𝑌
3𝐾 = 1 − 2σ

𝑌 = 2η 1 + σ( ) ⇒  𝑌
η = 2(1 + σ)

Adding these two equations,
𝑌

3𝐾 + 𝑌
2η = 3

𝑌 = 9η𝐾
3𝐾+η

𝑌 = 3𝐾 1 − 2σ( ) 𝑌 = 2η 1 + σ( )
3𝐾 1 − 2σ( ) = 2η 1 + σ( )
3𝐾 − 2η = 2ησ + 6𝐾σ
3𝐾 − 2η = σ 2η + 6𝐾( )

σ = 3𝐾−2η
6𝐾+2η

Types of Beams
A structure designed to support loads applied perpendicular to its axis is known as a beam.

Beams are of three types.
● Simple beam
● Cantilever beam
● Simple beam with overhang
1. Simple beam: A beam supported at the two ends is known as a simple beam. One end of this

beam is supported by a knife edge while the other end is supported by a roller. Simple beam is
shown in the figure.
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2. Cantilever beam: A beam in which one end is fixed and placed horizontally and weights are
suspended at the other end is known as a cantilever beam. Cantilever beam is shown in figure.

3. Simple beam with overhang: A beam in which one end is extended in the form of a cantilever
beyond its support is known as overhanging beam. Overhanging beam is shown in figure.

Types of bending
Bending of beams is of two types.

● Uniform bending
● Non-uniform bending

Radius of curvature of the neutral axis of a beam is known as the radius R of the beam.
Uniform bending: If the value of radius R is the same for all points of neutral axis, the bending is
called uniform bending. The bending of a beam which is symmetrically supported on two knife
edges and equally loaded at the two ends is an example for uniform bending. Uniform bending is
shown in figure.

Non-uniform bending: If the value of radius R is different for different points of the neutral axis, the
bending is called non-uniform bending. The bending of a beam which is symmetrically supported on
two knife edges and loaded at the middle is an example for non-uniform bending. Non-uniform
bending is shown in figure.
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Unit-III
Mechanics of Rigidbodies

Euler’s equations (or) Equations of motion of a rigid body
Equation of motion of a rigid body in space coordinate system

………………1τ
→

𝑠𝑝𝑎𝑐𝑒
= 𝑑𝐿

→

𝑑𝑡( )
𝑠𝑝𝑎𝑐𝑒

The rotation of a rigid body can also be studied by a coordinate system fixed in the rigid body.This is
known as body coordinate system.

………………2𝐿
→

𝑏𝑜𝑑𝑦
= 𝐼⃡ω

→( )𝑏𝑜𝑑𝑦
We can transform the equations of motion of a rigid body from body coordinate system to space
coordinate system using the operator given below.

𝑑
𝑑𝑡 ....( )

𝑠𝑝𝑎𝑐𝑒
= 𝑑

𝑑𝑡 ....( )
𝑠𝑝𝑎𝑐𝑒

+ ω
→

× (....)

𝑑𝐿
𝑑𝑡( )

𝑠𝑝𝑎𝑐𝑒
= 𝑑𝐿

𝑑𝑡( )
𝑠𝑝𝑎𝑐𝑒

+ ω
→

× 𝐿
→

From equations 1 and 2

τ
→

= 𝑑𝐿
→

𝑑𝑡 + ω
→

× 𝐿
→

If the body is symmetric, the axes of rotation coincides with the principal axis of symmetry.In this
case, except the diagonal elements , the non-diagonal elements of the inertia tensor will be𝐼

𝑥𝑥
, 𝐼

𝑦𝑦
, 𝐼

𝑧𝑧
zero.

𝐿𝑒𝑡 𝐼
𝑥𝑥

= 𝐼
1
, 𝐼

𝑦𝑦
= 𝐼

2
, 𝐼

𝑧𝑧
= 𝐼

3

Hence in direction𝑋

τ
1

=
𝑑𝐿

1

𝑑𝑡 + (ω
2
𝐿

3
− ω

3
𝐿

2
)

Since 𝐿 = 𝐼ω

τ
1

= 𝐼
1

𝑑ω
1

𝑑𝑡 + (ω
2
𝐼

3
ω

3
− ω

3
𝐼

2
ω

2
)

τ
1

= 𝐼
1

𝑑ω
1

𝑑𝑡 + (𝐼
3

− 𝐼
2
)ω

2
ω

3

Similarly in directions𝑌, 𝑍

τ
2

= 𝐼
2

𝑑ω
2

𝑑𝑡 + (𝐼
1

− 𝐼
3
)ω

1
ω

3

τ
3

= 𝐼
3

𝑑ω
3

𝑑𝑡 + (𝐼
2

− 𝐼
1
)ω

1
ω

2

The above three equations are known as Euler’s equations of motion of a rigid body. Expressing
these equations in terms of 𝑥, 𝑦, 𝑧.

τ
𝑥

= 𝐼
𝑥

𝑑ω
𝑥

𝑑𝑡 + (𝐼
𝑧

− 𝐼
𝑦
)ω

𝑦
ω

𝑧

τ
𝑦

= 𝐼
𝑦

𝑑ω
𝑦

𝑑𝑡 + (𝐼
𝑥

− 𝐼
𝑧
)ω

𝑥
ω

𝑧

τ
𝑧

= 𝐼
𝑧

𝑑ω
𝑧

𝑑𝑡 + (𝐼
𝑦

− 𝐼
𝑥
)ω

𝑥
ω

𝑦
Expressing these equations in symmetric form

τ
𝑥

= 𝐼
𝑥

𝑑ω
𝑥

𝑑𝑡 − (𝐼
𝑦

− 𝐼
𝑧
)ω

𝑦
ω

𝑧

τ
𝑦

= 𝐼
𝑦

𝑑ω
𝑦

𝑑𝑡 − (𝐼
𝑧

− 𝐼
𝑥
)ω

𝑧
ω

𝑥

τ
𝑧

= 𝐼
𝑧

𝑑ω
𝑧

𝑑𝑡 − (𝐼
𝑥

− 𝐼
𝑦
)ω

𝑥
ω

𝑦

Physics Minor-II Sem-Mechanics & Properties of Matter-K.V.Ganesh Kumar, Lecturer in Physics 18



Applications of Euler’s equations
Law of conservation of energy:
Euler’s equations of motion are given by

τ
1

= 𝐼
1

𝑑ω
1

𝑑𝑡 + (𝐼
3

− 𝐼
2
)ω

2
ω

3

τ
2

= 𝐼
2

𝑑ω
2

𝑑𝑡 + (𝐼
1

− 𝐼
3
)ω

1
ω

3

τ
3

= 𝐼
3

𝑑ω
3

𝑑𝑡 + (𝐼
2

− 𝐼
1
)ω

1
ω

2
When there is no external torque acting on the rigid body τ = 0

𝐼
1

𝑑ω
1

𝑑𝑡 + 𝐼
3

− 𝐼
2( )ω

2
ω

3
= 0

𝐼
2

𝑑ω
2

𝑑𝑡 + (𝐼
1

− 𝐼
3
)ω

1
ω

3
= 0

𝐼
3

𝑑ω
3

𝑑𝑡 + (𝐼
2

− 𝐼
1
)ω

1
ω

2
= 0

Multiplying the above equations with respectively and adding we getω
1
, ω

2
, ω

3

𝐼
1

𝑑ω
1

𝑑𝑡 ω
1

+ 𝐼
2

𝑑ω
2

𝑑𝑡 ω
2

+ 𝐼
3

𝑑ω
3

𝑑𝑡 ω
3

= 0
1
2

𝑑
𝑑𝑡 ⌊𝐼

1
ω

1
2 + 𝐼

2
ω

2
2 + 𝐼

3
ω

3
2⌋ = 0

=Rotational kinetic energy𝐼
1
ω

1
2 + 𝐼

2
ω

2
2 + 𝐼

1
ω

3
2 = 𝐾 

1
2

𝑑
𝑑𝑡 2𝐾( ) = 0

𝑑𝐾
𝑑𝑡 = 0

Constant𝐾 =  
Hence the rotational kinetic energy of a rigid body remains constant in the absence of net external
torque.
Law of conservation of angular momentum:
When there is no external torque acting on the rigid body τ = 0

𝐼
1

𝑑ω
1

𝑑𝑡 + 𝐼
3

− 𝐼
2( )ω

2
ω

3
= 0

𝐼
2

𝑑ω
2

𝑑𝑡 + (𝐼
1

− 𝐼
3
)ω

1
ω

3
= 0

𝐼
3

𝑑ω
3

𝑑𝑡 + (𝐼
2

− 𝐼
1
)ω

1
ω

2
= 0

Multiplying the above equations with respectively and adding we get𝐼
1
ω

1
, 𝐼

2
ω

2
,  𝐼

3
ω

3
 

𝐼
1

2 𝑑ω
1

𝑑𝑡 ω
1

+ 𝐼
2

2 𝑑ω
2

𝑑𝑡 ω
2

+ 𝐼
3

2 𝑑ω
3

𝑑𝑡 ω
3

= 0
1
2

𝑑
𝑑𝑡 ⌊𝐼

1
2ω

1
2 + 𝐼

2
2ω

2
2 + 𝐼

3
2ω

3
2⌋ = 0

1
2

𝑑
𝑑𝑡 𝐿2[ ] = 0

𝐿 𝑑𝐿
𝑑𝑡 = 0

𝑑𝐿
𝑑𝑡 = 0

𝐿 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Hence the angular momentum of a rigid body remains constant in the absence of net external torque.
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Unit-IV
Central forces

Central force definition and examples
A force which always acts towards or away from a fixed point and whose magnitude depends only on
the distance of the particle from the fixed point is known as a central force.

Central force 𝐹
→

= 𝑓 𝑟( )𝑟
^

Examples:
1. Gravitational force is a central force.

Gravitational force between two objects of masses separated by a distance r is given by𝑚
1
, 𝑚

2 

𝐹
→

=−
𝐺𝑚

1
𝑚

2 

𝑟2 𝑟
^

𝐿𝑒𝑡 − 𝐺𝑚
1
𝑚

2 
= 𝐶

∴ 𝐹
→

= 𝐶

𝑟2 𝑟
^

𝑓 𝑟( ) = 𝐶

𝑟2

∴ 𝑓 𝑟( ) ∝  1

𝑟2

2. Electrostatic force is a central force.
Electrostatic force between two particles of charges separated by a distance is given by𝑞

1
,  𝑞

2 
𝑟

𝐹
→

= 1
4πϵ

0

𝑞
1
𝑞

2 

𝑟2 𝑟
^

𝐿𝑒𝑡
𝑞

1
𝑞

2 

4πϵ
0

= 𝐶 

∴ 𝐹
→

= 𝐶

𝑟2 𝑟
^

𝑓 𝑟( ) = 𝐶

𝑟2

∴ 𝑓 𝑟( ) ∝  1

𝑟2

To prove that Central force is a conservative force
If the work done by a force in moving a particle from one point to another is independent of the path
followed then such force is known as a conservative force. (Or)
If the work done by a force in moving a particle around a closed path is zero then the force is known
as a central force.

Work done by the central force in moving the particle from to is given by𝐹
→

𝐴 𝐵

𝑊
𝐴𝐵

=
𝐴

𝐵

∫ 𝐹
→

. 𝑑𝑟
→

Central force 𝐹
→

= 𝑓 𝑟( )𝑟
^

𝑊
𝐴𝐵

=
𝐴

𝐵

∫ 𝑓 𝑟( )𝑟
^
. 𝑑𝑟

→

𝑟
→
. 𝑟

→
= 𝑟2

Differentiating on both sides 𝑟
→
. 𝑑𝑟

→
+ 𝑑𝑟

→
. 𝑟

→
= 2𝑟 𝑑𝑟

2𝑟
→
. 𝑑𝑟

→
= 2𝑟 𝑑𝑟

𝑟
→
. 𝑑𝑟

→
= 𝑟 𝑑𝑟
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𝑟
→
.𝑑𝑟

→

𝑟 = 𝑑𝑟

𝑟
^
. 𝑑𝑟

→
= 𝑑𝑟

∴𝑊
𝐴𝐵

=
𝐴

𝐵

∫ 𝑓 𝑟( )𝑟
^
. 𝑑𝑟

→
=

𝐴

𝐵

∫ 𝑓 𝑟( ) 𝑑𝑟

𝑊
𝐴𝐵

=
𝐴

𝐵

∫ 𝑓 𝑟( ) 𝑑𝑟

Value of this integral depends only on the nature of the function and the limits.

Hence 𝑊
𝐵𝐴

=
𝐵

𝐴

∫ 𝑓 𝑟( ) 𝑑𝑟 =−
𝐴

𝐵

∫ 𝑓 𝑟( ) 𝑑𝑟 =− 𝑊
𝐴𝐵

∴ 𝑊
𝐴𝐵

+ 𝑊
𝐵𝐴

= 0

Hence the work done by central force in moving a particle around the closed path is zero.
Properties of Central forces

✔ A force which always acts towards or away from a fixed point and whose magnitude depends
only on the distance of the particle from the fixed point is known as a central force.

Central force 𝐹
→

= 𝑓 𝑟( )𝑟
^

✔ Central force is a conservative force.  Work done by a central force in moving a particle from
one point to another is independent of the path followed.

✔ Under the action of a central force the torque acting on a particle is zero.
✔ Under the action of a central force the angular momentum of a particle remains constant.
✔ Under the action of a central force the aerial velocity remains constant.

Areal Velocity Constant= 𝑑𝐴
𝑑𝑡 = ℎ

2 =
Equation of motion of a particle under the action of a central force

When the Central force acts on a particle, the acceleration is always in the direction of the radius
vector. This acceleration is known as radial acceleration.

Radial acceleration 𝑎
𝑟

= 𝑑2𝑟

𝑑𝑡2 − 𝑟 𝑑θ
𝑑𝑡( )2

Under Central force, the transverse acceleration is always zero.

Transverse acceleration 𝑎
𝑡

= 1
𝑟

𝑑
𝑑𝑡 𝑟2 𝑑θ

𝑑𝑡( ) = 0

𝑟2 𝑑θ
𝑑𝑡 = ℎ = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑑θ
𝑑𝑡 = ℎ

𝑟2

𝐿𝑒𝑡    𝑟 = 1
𝑢

𝑑𝑟
𝑑𝑡 = 𝑑

𝑑𝑡
1
𝑢( ) =− 1

𝑢2
𝑑𝑢
𝑑𝑡 =− 1

𝑢2
𝑑𝑢
𝑑θ

𝑑θ
𝑑𝑡 =− 1

𝑢2
𝑑𝑢
𝑑θ

ℎ

𝑟2 =− ℎ 𝑑𝑢
𝑑θ

𝑑𝑟
𝑑𝑡 =− ℎ 𝑑𝑢

𝑑θ
𝑑2𝑟

𝑑𝑡2 = 𝑑
𝑑𝑡

𝑑𝑟
𝑑𝑡( ) = 𝑑

𝑑𝑡 − ℎ 𝑑𝑢
𝑑θ( ) =− ℎ 𝑑

𝑑𝑡
𝑑𝑢
𝑑θ( ) =− ℎ 𝑑

𝑑θ
𝑑𝑢
𝑑θ( ) 𝑑θ

𝑑𝑡 =− ℎ 𝑑2𝑢

𝑑θ2
ℎ

𝑟2 =− ℎ2𝑢2 𝑑2𝑢

𝑑θ2

𝑑2𝑟

𝑑𝑡2 =− ℎ2𝑢2 𝑑2𝑢

𝑑θ2

𝑎
𝑟

= 𝑑2𝑟

𝑑𝑡2 − 𝑟 𝑑θ
𝑑𝑡( )2

=− ℎ2𝑢2 𝑑2𝑢

𝑑θ2 − 𝑟 ℎ2

𝑟4 =− ℎ2𝑢2 𝑑2𝑢

𝑑θ2 − ℎ2𝑢3

From Newton’s Second law

𝐹 =− 𝑚𝑎
𝑟

=− 𝑚 − ℎ2𝑢2 𝑑2𝑢

𝑑θ2 − ℎ2𝑢3( )
𝐹 = 𝑚 ℎ2𝑢2 𝑑2𝑢

𝑑θ2 + ℎ2𝑢3( )
𝐹
𝑚 = ℎ2𝑢2 𝑑2𝑢

𝑑θ2 + 𝑢( )
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𝑝 = ℎ2𝑢2 𝑑2𝑢

𝑑θ2 + 𝑢( )
𝑑2𝑢

𝑑θ2 + 𝑢 = 𝑝

ℎ2𝑢2

Kepler's first law of planetary motion
Every planet revolves around the sun in an elliptical orbit with the sun at one of its foci. This is known
as Kepler's first law of planetary motion.
Let a planet of mass ‘m’ revolve around the sun of mass M in an elliptical orbit.

Gravitational force 𝐹 = 𝐺𝑀𝑚

𝑟2 = μ𝑚

𝑟2

∵ 𝐺𝑀 = µ = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡
𝑝 = 𝐹

𝑚 = µ

𝑟2

Equation of motion of a particle under the action of Central force
𝑑2𝑢

𝑑θ2 + 𝑢 = 𝑝

ℎ2𝑢2 = µ

𝑟2ℎ2𝑢2 = µ

ℎ2

𝑑2𝑢

𝑑θ2 + 𝑢 = µ

ℎ2

𝑑2𝑢

𝑑θ2 + 𝑢 − µ

ℎ2( ) = 0

𝑑2

𝑑θ2 𝑢 − µ

ℎ2( ) + 𝑢 − µ

ℎ2( ) = 0

𝑙𝑒𝑡𝑢 − µ

ℎ2 = 𝑋

𝑑2𝑋

𝑑θ2 + 𝑋 = 0
Solution of this differential equation

𝑋 = 𝐴𝑐𝑜𝑠 θ − θ
0( ) 

𝑢 − µ

ℎ2 = 𝑋 = 𝐴𝑐𝑜𝑠 θ − θ
0( ) 

𝑢 = µ

ℎ2 +  𝐴𝑐𝑜𝑠 θ − θ
0( ) 

𝑢 = µ

ℎ2 1 + 𝐴 ℎ2

µ 𝑐𝑜𝑠 θ − θ
0( ) ⎡⎢⎣

⎤⎥⎦

1
𝑟 =

1+𝐴 ℎ2

µ 𝑐𝑜𝑠 θ−θ
0( ) 

ℎ2

µ
This equation is similar to the equation of a Conic.

1
𝑟 = 1+𝑒𝑐𝑜𝑠 θ 

𝑙

Eccentricity 𝑒 = 𝐴ℎ2

µ

Kinetic Energy 𝐾. 𝐸 = 1
2 𝑚 𝑑𝑟

𝑑𝑡( )2
+ 𝑟2 𝑑θ

𝑑𝑡( )2⎡⎢⎣
⎤⎥⎦

𝑑𝑟
𝑑𝑡 =− ℎ 𝑑𝑢

𝑑θ 𝑎𝑛𝑑 𝑑θ
𝑑𝑡 = ℎ

𝑟2

𝐾. 𝐸 = 1
2 𝑚 ℎ2 𝑑𝑢

𝑑θ( )2
+ 𝑟2 ℎ2

𝑟4
⎡⎢⎣

⎤⎥⎦
= 1

2 𝑚 ℎ2 𝑑𝑢
𝑑θ( )2

+ ℎ2𝑢2⎡⎢⎣
⎤⎥⎦

𝐾. 𝐸 = 1
2 𝑚ℎ2 𝑑𝑢

𝑑θ( )2
+ 𝑢2⎡⎢⎣

⎤⎥⎦
𝑢 = µ

ℎ2 +  𝐴 cos 𝑐𝑜𝑠 θ − θ
0( ) 

𝑑𝑢
𝑑θ =− 𝐴 sin 𝑠𝑖𝑛 θ − θ

0( ) 
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𝐾. 𝐸 = 1
2 𝑚ℎ2 𝐴2 θ − θ

0( ) + µ2

ℎ4 + 𝐴2 θ − θ
0( ) + 2μ𝐴

ℎ2 cos 𝑐𝑜𝑠 θ − θ
0( ) ⎡⎢⎣

⎤⎥⎦
𝐾. 𝐸 = 1

2 𝑚ℎ2 𝐴2 + µ2

ℎ4 + 2μ𝐴

ℎ2 cos 𝑐𝑜𝑠 θ − θ
0( ) ⎡⎢⎣

⎤⎥⎦
Potential Energy 𝑃. 𝐸 =

∞

𝑟

∫ 𝐹𝑑𝑟 =
∞

𝑟

∫ μ𝑚

𝑟2 𝑑𝑟 = μ𝑚
∞

𝑟

∫ 1

𝑟2 𝑑𝑟 = μ𝑚 − 1
𝑟( )

∞

𝑟
=− μ𝑚 1

𝑟( )
∞

𝑟

𝑃. 𝐸 =− μ𝑚 1
𝑟 =− μ𝑚𝑢

𝑃. 𝐸 =  − μ𝑚 µ

ℎ2 +  𝐴 cos 𝑐𝑜𝑠 θ − θ
0( ) ⎡⎢⎣

⎤⎥⎦
=  − 𝑚 µ µ

ℎ2 +  μ𝐴 cos 𝑐𝑜𝑠 θ − θ
0( ) ( ) =− 𝑚 µ2

ℎ2 +  μ𝐴 cos 𝑐𝑜𝑠 θ − θ
0( ) ( )

=− 1
2 𝑚ℎ2 2

ℎ2
µ2

ℎ2 + 2

ℎ2 μ𝐴 cos 𝑐𝑜𝑠 θ − θ
0( ) ( ) =− 1

2 𝑚ℎ2 2µ2

ℎ4 +  2μ𝐴

ℎ2 cos 𝑐𝑜𝑠 θ − θ
0( ) ( )

𝑃. 𝐸 =− 1
2 𝑚ℎ2 2µ2

ℎ4 +  2μ𝐴

ℎ2 cos 𝑐𝑜𝑠 θ − θ
0( ) ⎡⎢⎣

⎤⎥⎦
𝐸 = 𝐾. 𝐸 + 𝑃. 𝐸

𝐸 = 1
2 𝑚ℎ2 𝐴2 + µ2

ℎ4 + 2μ𝐴

ℎ2 cos 𝑐𝑜𝑠 θ − θ
0( ) ⎡⎢⎣

⎤⎥⎦
 — 1

2 𝑚ℎ2 2µ2

ℎ4 +  2μ𝐴

ℎ2 cos 𝑐𝑜𝑠 θ − θ
0( ) ( )

𝐸 = 1
2 𝑚ℎ2 𝐴2 − µ2

ℎ4
⎡⎢⎣

⎤⎥⎦
2𝐸

𝑚ℎ2 = 𝐴2 − µ2

ℎ4

𝐴2 = µ2

ℎ4 + 2𝐸

𝑚ℎ2 = µ2

ℎ4 1 + 2𝐸

𝑚ℎ2
ℎ4

µ2( ) = µ2

ℎ4 1 + 2𝐸ℎ2

𝑚µ2( )
𝐴 = µ

ℎ2 1 + 2𝐸ℎ2

𝑚µ2

𝑒 = 𝐴ℎ2

µ = 1 + 2𝐸ℎ2

𝑚µ2

For a bound System Hence Eccentricity𝐸 < 0.   𝑒 < 1.
Hence the orbit is an ellipse.

Kepler’s Second law of planetary motion
The area velocity of a planet always remains constant.  This is known as Kepler’s Second law of
planetary motion.

Consider a planet is moved from to in a time as shown in figure.𝑃 𝑃' ∆𝑡

Area 𝑑𝐴 = 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 = 1
2  𝑟 𝑟 + 𝑑𝑟( ) sin 𝑠𝑖𝑛 𝑑θ 

𝐼𝑓∆𝑡 → 0,  𝑡ℎ𝑒𝑛   𝑟 𝑟 + 𝑑𝑟( ) ≈ 𝑟2𝑎𝑛𝑑 sin 𝑠𝑖𝑛 𝑑θ = 𝑑θ
𝑑𝐴 = 1

2 𝑟2𝑑θ

Areal Velocity= 𝑑𝐴
𝑑𝑡 =

1
2 𝑟2𝑑θ

𝑑𝑡 = 1
2 𝑟2 𝑑θ

𝑑𝑡( )
Physics Minor-II Sem-Mechanics & Properties of Matter-K.V.Ganesh Kumar, Lecturer in Physics 23



Constant𝑟2 𝑑θ
𝑑𝑡 = ℎ

2 =

Areal Velocity Constant= 𝑑𝐴
𝑑𝑡 = ℎ

2 =

Kepler’s third law of planetary motion
Square of the time period of a planet is directly proportional to the cube of the length of its semi-major
axis

Time period 𝑇 =  𝐴𝑟𝑒𝑎 𝑠𝑤𝑒𝑝𝑡 𝑖𝑛 𝑜𝑛𝑒 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛
𝐴𝑟𝑒𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = π𝑎𝑏

ℎ
2

= 2π𝑎𝑏
ℎ

Length of semi latus rectum 𝑙 = ℎ2

µ = 𝑏2

𝑎

ℎ2

µ = 𝑏2

𝑎

ℎ2 = 𝑏2 µ
𝑎

ℎ = 𝑏 µ
𝑎

∴ 𝑇 = 2π𝑎𝑏

𝑏 µ
𝑎

= 2π𝑎 𝑎
µ

𝑇2 = 4π2𝑎3

µ = 4π2

µ( )𝑎3

𝑇2 ∝ 𝑎3
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Unit-V
Special theory of Relativity

Postulates of Special theory of relativity:
✔ Laws of Physics remain the same for all observers in uniform motion relative to one another
✔ Speed of light is the same for all observers in uniform motion relative to one another.
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